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Abstract

Managers, employers, policymakers, and others often seek to understand whether decisions are biased
against certain groups. One popular analytic strategy is to estimate disparities after adjusting for ob-
served covariates, typically with a regression model. This approach, however, suffers from two key
statistical challenges. First, omitted-variable bias can skew results if the model does not adjust for all
relevant factors; second, and conversely, included-variable bias—a lesser-known phenomenon—can skew
results if the set of covariates includes irrelevant factors. Here we introduce a new, three-step statistical
method, which we call risk-adjusted regression, to address both concerns in settings where decision mak-
ers have clearly measurable objectives. In the first step, we use all available covariates to estimate the
value, or inversely, the risk, of taking a certain action, such as approving a loan application or hiring a
job candidate. Second, we measure disparities in decisions after adjusting for these risk estimates alone,
mitigating the problem of included-variable bias. Finally, in the third step, we assess the sensitivity of
results to potential mismeasurement of risk, addressing concerns about omitted-variable bias. To do so,
we develop a novel, non-parametric sensitivity analysis that yields tight bounds on the true disparity
in terms of the average gap between true and estimated risk—a single interpretable parameter that fa-
cilitates credible estimates. We demonstrate this approach on a detailed dataset of 2.2 million police
stops of pedestrians in New York City, and show that traditional statistical tests of discrimination can
substantially underestimate the magnitude of disparities.

1 Introduction

Studies of discrimination generally start by assessing whether certain groups, particularly those defined
by race and gender, receive favorable decisions more often than others. For example, one might examine
whether loan applications from white candidates are granted more often than those from racial minorities,
or whether male employees are promoted more often than women. Although observed disparities may be the
result of bias, it is also possible that they stem from statistical differences between groups. In particular, if
some groups contain disproportionately many qualified members, then one would also expect those groups
to receive disproportionately many favorable decisions, even in the absence of discrimination.

To tease apart these two possibilities—group differences versus discrimination—the most popular sta-
tistical approach is ordinary linear or logistic regression. In the banking context, for instance, one could
examine race-contingent lending rates after adjusting for relevant factors, such as income and credit history.
Disparities that persist after accounting for such factors are often interpreted as evidence of discrimination.
This basic statistical strategy has been used in numerous studies to test for bias across domains, including
education (Espenshade et al., 2004; Grossman et al., 2023b), employment (Polachek, 2008), criminal jus-
tice (Abrams, 2014; Gaebler et al., 2022; Gelman et al., 2007; MacDonald and Raphael, 2019; Rehavi and
Starr, 2012), and medicine (Balsa et al., 2005).

∗We thank Josh Grossman, Julian Nyarko, and João M. Souto-Maior for helpful conversations. All data and replication code
are available at: https://github.com/jgaeb/rar-repro. The sensitivity analysis is implemented in the rar R package available
on CRAN.
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Despite the ubiquity of such regression-based tests for discrimination, the approach suffers from two
serious statistical limitations. First, the well-known problem of omitted-variable bias arises when decisions
are based in part on relevant factors that correlate with group membership, but which are omitted from
the regression (Angrist and Pischke, 2008). For example, if lending officers consider an applicant’s payment
history, and if payment history correlates with race but is not recorded in the data (and thus cannot be
included in the regression), the results of the regression can suggest discrimination where there is none,
or vice versa. Unfortunately, omitted-variable bias is the rule rather than the exception. It is generally
prohibitive to measure every variable relevant to a decision, and it is likely that most unmeasured variables
are at least weakly correlated with demographic attributes, skewing results.

A second problem with regression-based tests is what Ayres (2005, 2010) calls included-variable bias, an
issue as important as omitted-variable bias in studies of discrimination but one that receives far less attention.
To take an extreme example, it is problematic to include control variables in a regression that are obvious
proxies for legally protected attributes—such as vocal register as a proxy for gender—when examining the
extent to which observed disparities stem from group differences in qualification. Including such proxies will
typically lead one to underestimate the true magnitude of discrimination in decisions. But what counts as
a “proxy” is not always clear. For example, given existing patterns of residential segregation, one might
argue that ZIP codes are a proxy for race, and thus should be excluded when testing for racial bias. But
one could also argue that ZIP code provides legitimate information relevant to a decision, and so excluding
it would lead to omitted-variable bias. Ayres (2010) proposes a middle ground, suggesting that potential
proxies should be included, but their coefficients capped to a “justifiable” level; in practice, however, it is
difficult to determine and defend specific constraints on regression coefficients.1

Here we present a statistically principled and logistically straightforward method for measuring discrim-
ination that addresses both omitted- and included-variable bias. Our method, which we call risk-adjusted
regression, proceeds in three steps. In the first step, we use all available information, including potential
proxies of protected traits, to estimate the value—or, equivalently, the risk—of taking a particular action.
For example, in the lending context, we might estimate an applicant’s risk of default if granted a loan,
conditional on all available covariates. In the second step, we assess disparities by regressing decisions (e.g.,
loan offers) on individual-level risk estimates and protected traits alone, allowing us to measure the extent
to which similarly qualified individuals are treated differently. This strategy can be seen as formalizing the
coefficient-capping procedure of Ayres (2010)—with covariates used only to the extent that they are statis-
tically justified by risk—and thus circumvents the problem of included-variable bias. Finally, we assess the
sensitivity of results to potential mismeasurement of risk. In particular, we derive tight analytic bounds on
risk-adjusted disparities as a function of the extent to which risk estimates differ from true risk.

To demonstrate this approach, we examine 2.2 million stops of pedestrians conducted by the New York
City Police Department between 2008 and 2011. After adjusting for a stopped individual’s statistical risk
of carrying a weapon—based in part on detailed behavioral indicators recorded by officers—we find that
stopped Black and Hispanic pedestrians are searched for weapons substantially more often than stopped white
individuals. We find that these risk-adjusted disparities are considerably larger than disparities suggested
by a standard regression that adjusts for all available covariates, underscoring the importance of accounting
for included-variable bias. Finally, we show that our results are robust to potentially large errors in risk
estimates.

1Such problems have prompted a search for alternatives to regression-based approaches. Most prominently, Becker (1993)
proposed the outcome test, which is based not on the rate at which decisions are made, but on the success rate of those
decisions. In the context of banking, Becker argued that even if, hypothetically, racial minorities were less creditworthy than
white applicants, minorities who were granted loans should still be found to repay their loans at the same rate as white applicants
who were granted loans. If loans to minorities had a higher repayment rate than loans to white borrowers, it suggests that
lenders applied a double standard (intentionally or not), granting loans only to exceptionally qualified minorities—potentially
violating disparate impact laws. The outcome-based approach has been applied almost as broadly as simple regression to study
discrimination in, for example, policing (Ayres, 2002; Goel et al., 2016b, 2017; Knowles et al., 2001), lending (Berkovec et al.,
2018), and scientific publication (Smart and Waldfogel, 1996). Outcome tests, however, have their own significant statistical
shortcomings, most notably the problem of infra-marginality (Ayres, 2002; Pierson et al., 2018; Simoiu et al., 2017), which can
lead the test to incorrectly suggest an absence of discrimination (Pierson et al., 2020).
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2 Theories of Discrimination

There are two main legal doctrines of discrimination in the United States: disparate treatment and disparate
impact. Here we describe the conceptual underpinnings of these theories. We further connect these ideas to
standard statistical tests of discrimination, highlighting the problem of included-variable bias.

2.1 The Jurisprudence of Discrimination

Disparate treatment derives force from the Equal Protection Clause of the U.S. Constitution’s Fourteenth
Amendment, and it prohibits government agents from acting with “discriminatory purpose” (Washington
v. Davis, 1976). Although equal protection law bars policies undertaken with animus, it allows for the
limited use of protected attributes to further a compelling government interest. For example, until recently,
certain affirmative action programs for college admissions were legally permissible to further the government’s
interest in promoting diversity. In 2023, the U.S. Supreme Court overturned the legality of such affirmative
action programs, ruling that it was unlawful to explicitly consider race in college admissions decisions (SFFA
v. Harvard, 2023).

The most widespread statistical test of such intentional discrimination is ordinary linear or logistic re-
gression, in which one estimates the likelihood of favorable (or unfavorable) decisions across groups defined
by race, gender, or other legally protected traits. In this approach, the investigator adjusts for all potentially
relevant risk factors, excluding only clear proxies for the protected attributes. Barring omitted-variable bias,
non-zero coefficients on the protected traits suggest those factors influenced the decision maker’s actions;
in the absence of a compelling justification, such evidence is suggestive of a discriminatory purpose. It is
difficult—and perhaps impossible—to rigorously define the influence, or causal effect, of largely immutable
traits like race on decisions (Greiner and Rubin, 2011; VanderWeele and Robinson, 2014), but a regression
of this type is nevertheless considered a reasonable first step to identify discriminatory motive, both by
criminologists and by legal scholars (Fagan, 2010; Gaebler et al., 2022). For an equal protection claim to
succeed in court, however, one typically needs additional documentary evidence (e.g., acknowledgement of
an illegitimate motive) to bolster the statistical evidence.

In contrast to disparate treatment, the disparate impact doctrine is concerned with the effects of a policy,
not a decision maker’s intentions, and it is the primary form of discrimination we study in this paper. Under
the disparate impact standard, a practice may be deemed discriminatory if it has an unjustified adverse
effect on protected groups, even in the absence of explicit categorization or animus. The doctrine stems from
statutory rules, rather than constitutional law, and applies only in certain contexts, such as employment (via
Title VII of the 1964 Civil Rights Act) and housing (via the Fair Housing Act of 1968). Apart from federal
statutes, some states have passed more expansive disparate impact laws, including Illinois and California.

The disparate impact doctrine was formalized in the landmark U.S. Supreme Court case Griggs v. Duke
Power Co. (1971). In 1955, the Duke Power Company instituted a policy that mandated employees have a
high school diploma to be considered for promotion, which had the effect of drastically limiting the eligibility
of Black employees. The Court found that this requirement had little relation to job performance, and thus
deemed it to have an unjustified disparate impact. Importantly, the employer’s motivation for instituting
the policy was irrelevant to the Court’s decision; even if enacted without discriminatory purpose, the policy
was deemed discriminatory in its effects and hence illegal.

More specifically, the legal test of disparate impact developed over half a century of case law has three
principal elements (Grossman et al., 2023a):

1. Adverse impact: The plaintiff first must establish that the policy disproportionately impacts the
minority group.

2. No Justification: Next, the defendant must establish that the adverse impact has a substantial
justification rooted in a legitimate policy goal.

3. Less discriminatory alternative: Even if the disparate impact is justified, the plaintiff can never-
theless prevail if they demonstrate that there is an alternative feasible policy with less adverse impact
on the minority group.
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Our concern here is with the second element, namely, whether the adverse impact has some legitimate policy
justification.

As discussed above, the standard statistical test for disparate treatment is a “kitchen sink” regression,
where one examines the residual explanatory power of protected group status after including all other
available covariates as controls. That approach, however, is ill-suited to assess whether practices are rationally
justified, which is the relevant standard in disparate impact claims. Ayres (2005) makes the point persuasively
in the context of the original Griggs decision:

“One could imagine running a regression to test whether an employer was less likely to hire African
American applicants than white applicants. It would be possible to control in this regression for
whether the applicant had received a high-school diploma. Under the facts of Griggs, such a
control would likely have reduced the racial disparity in the hiring rates. But including in the
regression a variable controlling for applicants’ education would be inappropriate. The central
point of Griggs was to determine whether the employer’s diploma requirement had a disparate
racial impact. The possibility that including a diploma variable would reduce the estimated race
effect in the regression would in no way be inconsistent with a theory that the employer’s diploma
requirement disparately excluded African Americans from employment.”

In short, by including educational status in the regression, one would mask the policy’s unjustified disparate
impact.

To assess claims of unjustified disparate impact—in Griggs and beyond—one would ideally compare
decision rates for similarly qualified groups of applicants (e.g., similarly qualified white and Black candidates).
Unfortunately, if one does not, or cannot, adjust for sufficiently many covariates, omitted-variable bias may
skew results; conversely, if one does adjust for a rich set of covariates, included-variable bias may corrupt
conclusions.2

2.2 A formal illustration of included-variable bias

We give a simple formal illustration of the statistical phenomenon at issue in Griggs. Consider the following
data-generating process, depicted by the DAG below.

E
Experience

A
Promotion

H
H.S. Degree

C
Race

ρ

Here, C indicates the race of an employee, with C = 0 representing a White employee and C = 1 a Black
employee; and H indicates whether an employee has a high-school degree. We assume that H and C have a
joint distribution given by

Pr(H = 1, C = 1) = Pr(H = 0, C = 0) =
1 + ρ

4
, Pr(H = 1, C = 0) = Pr(H = 0, C = 1) =

1− ρ

4
.

In particular, it follows that both H and C are marginally Bern( 12 ) with correlation ρ. Importantly, we need
not assume that race C “causes” an employee to have a high school degree but only that race and having
a high school degree have some correlation ρ (although, in this particular example, a causal mechanism like
discriminatory enrollment policies is plausible).

Further, E ∼ Unif(0, 1) denotes an employee’s level of experience, interpreted as the proportion of
employees who have been employed for less time than them. Finally, by A, we denote whether the employee
was promoted. Recalling the details of Griggs, we assume that

Pr(A = 1 | E,H) = E ·H.

2A related body of work conceptualizes discrimination as race-specific differences in decision error rates (Arnold et al., 2020,
2021; Bohren et al., 2022; Coston et al., 2020; Hardt et al., 2016). For example, one might consider differences in loan rejection
rates between white and Black applicants who in reality would repay their loans (i.e., a counterfactual false negative rate).
Recent work, however, has observed that by conditioning on ex post (potential) outcomes—as opposed to ex ante risk, as we
do—such approaches suffer from infra-marginality and associated statistical issues, rendering them problematic measures of
common legal and policy understandings of discrimination (Ayres, 2005; Corbett-Davies et al., 2023; Mayson, 2018; Nilforoshan
et al., 2022).
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That is, only employees with high school degrees are promoted, and their probability of promotion depends
on their experience.

A natural quantity to consider is the average difference in promotion rates for “similarly situated” Black
and White employees—that is, the average difference in promotion rates for employees with the same expe-
rience level and high school degree. In this case, it is straightforward to show3 that

E[Pr(A = 1 | E,H,C = 1)− Pr(A = 1 | E,H,C = 0)] = 0. (1)

Since race does not factor into promotion decisions, the average difference in hiring rates for similarly situated
Black and White employees is zero, suggesting an absence of disparate treatment. However, if, following the
Court’s reasoning in Griggs, one were to consider the average difference in promotion rates for employees
with the same experience level—regardless of whether they had a high school degree—one would obtain

E[Pr(A = 1 | E,C = 1)− Pr(A = 1 | E,C = 0)] =
ρ

2
, (2)

Following the facts of Griggs, we expect ρ < 0, indicating that Black employees are less likely than White
employees to have attained a high-school degree. As a result, as shown in Eq. (2), Black employees at the
same level of experience are less likely to be promoted. In particular, this estimand captures the disparate
impact of the promotion policy. This stylized example illustrates the importance of conditioning on the
appropriate variables to avoid included-variable bias in studies of discrimination. Here, high-school degree
attainment is inappropriate to condition on because it has little relationship to job performance.

Non-parametric estimands like those shown in Eqs. (1) and (2) can be statistically challenging to estimate
in practice, so it is common instead to use linear regression or other parametric models to approximate these
estimands. Imagine if an analyst were to fit a linear kitchen-sink regression model of A given experience
level (E), high school degree (H), the interaction between these two terms (E ·H), and race (C),

Pr(A = 1 | E,H,C) = β0 + βE · E + βH ·H + βE:H · E ·H + βC · C.

Here, βC is typically interpreted as the magnitude of “discrimination.” In this example, β̂C tends to zero
in large samples, suggesting a lack of disparate treatment ; see Appendix A. But, despite fitting a correctly
specified model of decisions, the analyst would fail to detect the disparate impact of the hiring policy.

Imagine, instead, that the analyst regressed decisions only on years of experience (E) and race (C), as
the Court indicated they should, i.e.,

Pr(A = 1 | E,C) = β′
0 + β′

E · E + β′
C · C.

In this case, as with the non-parametric estimand in Eq. (2), β̂′
C tends to ρ

2 , reflecting the fact that it
correctly captures the disparate impact of the promotion policy. (In this specific example, the parametric
and non-parametric estimands are identical, but this is not always the case.)

Following the Court’s ruling, we have assumed that any use of education is unjustified, while use of
experience is justified when making promotion decisions. As a result, the key expression of interest is that
given in Eq. (2), which quantifies disparities in decision rates after conditioning on experience (E) alone. In
practice, however, all covariates are usually at least weakly informative about one’s qualifications. In the
context of Griggs, high school degree attainment, even among employees with the same level of experience,
is likely at least somewhat predictive of job performance—making it unclear how one should formally define
a measure of disparate impact. In the subsequent section, we introduce one useful way of conceptualizing
disparate impact in this more realistic setting.

3 A Statistical Approach to Assessing Disparate Impact

We now formally describe our approach to measuring disparate impact—a procedure we call risk-adjusted
regression. The data generating process consists of draws of tuples (X, X̃, C,W,A) where

X ∈ X , X̃ ∈ X̃ , C ∈ {1, . . . ,m}, W ∈ {0, 1}, and A ∈ {0, 1}.
3See Appendix A for proof.
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Here A is a binary decision, X is the set of covariates on which that decision is based, and C represents
membership in some protected class. (In general, we make no assumption about whether C is encoded in
X.) The binary variable W represents a latent property of interest to the decision maker. However, we
assume the decision is made based on X alone, i.e.,

A ⊥⊥W | X.

Finally, we assume that an analyst observes the tuple (X̃, C,A,A ·W ), based on which they seek to estimate
disparate impact in the decision process. Here X̃ represents an alternative set of covariates available to the
analyst that may differ from X̃ in arbitrary ways. Additionally, the term A ·W reflects the fact that W is
only observed by the analyst when action A = 1 occurs.

As a concrete example, consider estimating risk-adjusted racial disparities in police searches of pedestrians
for weapons—the application we discuss in more detail below. In this case, Ai, Xi, Ci, and Wi, respectively,
indicate whether the i-th stopped pedestrian was searched, the information available to the officer when
deciding whether to conduct a search, the stopped individual’s race, and whether the individual was in
possession of a weapon. Further, X̃i denotes the information available to the analyst from administrative
records of the i-th stop. The fact that the analyst observes Ai ·Wi means that they know whether searched
individuals were carrying a weapon, but not whether unsearched individuals were carrying a weapon, which
is generally the case. Although we do not consider them further here, this general framing applies to a wide
variety of settings, such as hiring (where W represents a prospective employee’s productivity and A whether
or not they were hired) and lending (where W represents the amount a prospective borrower will repay and
A represents the bank’s lending decision).

Given this setup, we define ex ante risk to be:

R = Pr(W = 1 | X). (3)

In our policing example, Ri is the probability that the i-th stopped individual, with covariates Xi, is carrying
a weapon.4 To ensure that various quantities of interest are well-defined, we assume a variant of the overlap
condition holds (Rosenbaum and Rubin, 1983a,b):

0 < Pr(C = j | R) < 1, for all j = 1, . . . ,m.

We note that this version of the overlap condition is immediately implied by an analogue of the stronger
standard overlap condition: 0 < Pr(C = j | X) < 1.

Our goal is to quantify whether decisions systematically differ for individuals at the same level of risk.
Many estimands summarizing such potential differences are possible, but, for simplicity, we consider the
following non-parametric quantity:

E[Pr(A = 1 | C = j, R)− Pr(A = 1 | C = 1, R)]. (4)

Eq. (4) defines risk-adjusted disparities to be the difference in the probability of taking an action for group
C = j relative to the reference group C = 1, after accounting for potential differences in risk across groups.
Our overlap assumption ensures that this quantity is well-defined.

To facilitate computation—and, in particular, the sensitivity analysis presented below—we approximate
the estimand in (4) by a linear probability model. Specifically, we estimate Pr(A = 1 | C,R) as

m∑
j=1

β̂j · 1(C = j) + β̂R ·R, (5)

where 1(C = j) indicates membership in group j and β̂j is its corresponding fitted coefficient. The difference

between fitted coefficients, β̂j − β̂1, yields an estimate of (4)—see Appendix C for further details on the
statistical quality of this estimator.

4To allow for the possibility of statistical discrimination (Arrow, 1973; Chaudhuri and Sethi, 2008; Phelps, 1972) in the
decision maker’s course of action, risk may be conditioned on group membership as well as other observables—formally, by
including C among the covariates X. However, whether the inclusion of race or other protected attributes in risk models is
legally appropriate is uncertain. Importantly, our theoretical and empirical results remain essentially unchanged whether or
not one assumes X encodes C; see Figures 15 through 21 in Appendix E.
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Under this model, if β̂j is greater than β̂1, this indicates that members of group j are more likely to
receive action A = 1 than members of the base group with similar estimated risk. In our policing example,
this means that members of group j are searched more often than members of the reference group who were
equally likely to be carrying a weapon, and we would say that such elevated search rates are unjustified by
risk. We note, however, that β̂j > β̂1 does not imply intentional discrimination—as in Griggs, unjustified
disparate impact is possible even under a facially neutral policy undertaken without animus.

4 Sensitivity analysis

Our definition of disparate impact depends on the true risks, Ri. But, in practice, analysts observe only
partial information on X and W , and so at best can construct only imperfect estimates of risks, R̂i. For
instance, in our running police example, officers might base search decisions in part on subtle behavioral
cues that are not documented in the data; and analysts typically would not know whether individuals who
were not searched were in fact carrying a weapon. In Section 5, we discuss various approaches to estimating
risk in light of these challenges. Whatever approach one adopts, the accuracy of one’s conclusions depends
critically on the accuracy of one’s estimates of risk. To address this issue, we develop a novel sensitivity
analysis (implemented in the rar R package on CRAN) that draws inspiration from methods for sensitivity
analysis popular in the causal inference literature (Jung et al., 2020; Rosenbaum and Rubin, 1983a)—though
we emphasize that our framework does not itself involve estimating causal effects.

To start, we assume that there is a known constant ϵ ≥ 0 such that

1

n

n∑
i=1

|Ri − R̂i| ≤ ϵ; (6)

that is, that the true risks and the estimated risks differ on average by at most ϵ.5 Given this assumption,
the goal of our sensitivity analysis is to understand how different our estimate of disparate impact, β̂j − β̂1,

could be if we had access to the true risk Ri instead of the estimated risk R̂i. In practice, an analyst would
examine the robustness of conclusions to different choices of ϵ.

We could attempt to bound our estimate of disparate impact by searching over all possible choices of
Ri satisfying the constraint in Eq. (6). But such an approach is overly conservative, as the observed data
themselves rule out possible values of Ri. In our policing example, for instance, we expect the average true
risk of searched individuals to approximately equal the proportion of searched individuals carrying a weapon.
Since, by assumption, the observed data tell us about this latter quantity, they constrain the possible risk
distributions we must consider.

To formalize our approach, a key quantity to consider is the average (true) risk on each stratum,

1

nj,a

∑
i∈Sj,a

Ri, (7)

where
Sj,a = { i : Ci = j, Ai = a }, nj,a = |Sj,a|,

i.e., Sj,a denotes the stratum containing all those individuals in group j for whom the decision maker took
action a, and nj,a is its size. By the law of large numbers, the average risk on stratum Sj,a is approximated
by E[R | C = j, A = a]. Further,

E[R | C = j, A = a] = E[E[W | X] | C = j, A = a]

= E[E[W | X,U ] | C = j, A = a]

= E[W | C = j, A = a],

where the first equality follows by definition, the second by the fact that W ⊥⊥ U | X, and the third by the
law of iterated expectations, since C is a function of X and A is a function of X and U . When A = 1, by our

5These differences could arise due to either measurement or modelling error. However, since measurement error tends to
vanish as the sample size increases, it is less of a concern, and is better captured through bootstrapped bounds on the sensitivity
analysis, as we discuss below.
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assumption in Section 3, the above quantity is identified by data available to the analyst. In particular, in
our policing example, a consistent estimator of E[W | C = j, A = 1] is the proportion of searched individuals
possessing a weapon, among those individuals belonging to group j. We denote by ρj the analyst’s estimate
of E[W | C = j, A = 1] based on the observed data.6

Finally, putting the pieces together, for each particular j∗ we seek the largest and smallest values of
β̂j∗ − β̂1, as estimated with Ri, subject to two key constraints: (1) the average absolute deviation between

Ri and R̂i is less than ϵ; and (2) Ri is consistent with the observed data on each stratum Sj,1. This is
succinctly expressed as an optimization problem (henceforth “the base problem”):

Optimize
R∈Rn

β̂j∗ − β̂1

s.t. 1
n

∑n
i=1 |Ri − R̂i| ≤ ϵ
1

nj,1

∑
i∈Sj,1

Ri = ρj , (j = 1, . . . ,m)

Ri ≤ ui, (i = 1, . . . , n)
Ri ≥ ℓi, (i = 1, . . . , n)

(8)

where, by “Optimize,” we simply mean both maximize and minimize, and R̂i and ρj are fixed by the data
as discussed above.7 The additional upper and lower bounds on Ri arise from the fact that the risks must
be probabilities, i.e., 0 ≤ Ri ≤ 1, though our approach accommodates tighter, individual-specific bounds
ℓi ≤ Ri ≤ ui set by the analyst.

Below, we give a polynomial time approximation to the solution of the base problem when the constraints
are “sortable.” Sortability is a mild hypothesis which holds in the typical case, ℓi = 0 and ui = 1 for all i.
It also holds if, e.g., ℓi and ui differ from R̂i by the additive constant Γ on the log odds scale, as is common
in many kinds of sensitivity analysis (e.g., Rosenbaum, 2002).

Definition 4.1 (Sortability). We say that the constraints are sortable if there exists a permutation π of
{1, . . . , n} such that R̂π(1) ≤ . . . ≤ R̂π(n), ℓπ(1) ≤ . . . ≤ ℓπ(n), and uπ(1) ≤ . . . ≤ uπ(n).

There are two main obstacles to solving the base problem above. First, the dimension of the search space
is n − m, where n is the number of observations and m is the number of groups. Second, the regression
coefficients β̂j are non-convex functions of the true risk vector R = (R1, . . . , Rn). Addressing these twin
challenges involves a detailed analysis of the underlying geometry of the problem. Here we present an outline
of our approach that illustrates the key ideas, with the full exposition in Appendix B.

It is useful to think of the base problem as an optimization over subproblems (henceforth “the param-
eterized problem”) where the average (true) risk is assumed known and equal to some τj for unobserved
strata Sj,0 as well. Using the closed form of OLS regression, we can show that solving the parameterized
problem reduces to—although is not equivalent to—solving the following optimization problem (henceforth
“the simplified problem”):

Optimize
R∈Rn

1

n

n∑
i=1

R2
i

s.t. 1
n

∑n
i=1 |Ri − R̂i| ≤ ϵ,

1
nj,1
·
∑

i∈Sj,1
Ri = ρj , (j = 1, . . . ,m)

1
nj,0
·
∑

i∈Sj,0
Ri = τj , (j = 1, . . . ,m)

Ri ≤ ui, (i = 1, . . . , n)
Ri ≥ ℓi. (i = 1, . . . , n)

(9)

6One might alternatively estimate E[W | C = j, A = 1] by the average estimated risks on the stratum, namely 1
|Sj,1|

·∑
i∈Sj,1

R̂i. This alternative, which we adopt in our empirical analysis in Section 5, has the interpretive advantage that our

sensitivity analysis exactly recovers the correct answer when ϵ = 0.
7It may seem inappropriate to fix the average risks on the observed stratum Sj,1 to be exactly ρj , since ρj is estimated

with error. One could instead allow ρj to vary within some range (e.g., a 95% confidence interval), solving the parameterized
problem for various ρj as well as τj , as detailed below. However, doing so doubles the dimension of the search space, which is
computationally costly, and does not fully take advantage of available information about the distribution of the estimation error.
A more principled and computationally feasible approach to dealing with estimation error is to bootstrap confidence intervals
for the bounds following Zhao et al. (2019), as we do in Section 5.2 below, where ρj is re-estimated in each bootstrapped
resample, and the base problem is solved with corresponding equality constraints.
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R = 0

R = 1

tlwr
a,j

tupra,j

∆

Figure 1: Minimization normal form. Black dots represent estimated risks R̂i, the error bars represent the
allowable range [ℓi, ui], and red dots indicate the corresponding value of the normal form vector Ri. Here ∆
denotes the gap between the upper and lower thresholds.

An efficient method for solving the simplified problem then yields an efficient method for solving the base
problem simply by searching over this much smaller m-dimensional parameter space of (τ1, . . . , τm). In
practice, m typically equals two or three, and so this final optimization step can be solved either using a
grid search, as we do in Section 5, or using other optimization techniques for low-dimensional non-convex
problems.

The objective of the simplified problem, 1
n

∑n
i=1 R

2
i , is convex, as are the other constraints on R, and

so, in principle, minimization in the simplified problem can be achieved efficiently and accurately using
interior-point methods (Boyd and Vandenberghe, 2004). However, by carefully examining the KKT con-
ditions (Karush, 1939; Kuhn and Tucker, 1951), it is possible to see that the minimizing risk vector must
adhere to a special form, which we term “minimization normal form.” Specifically, there exist thresholds
tlwr
j,a and tuprj,a for each stratum such that the minimizing Ri is obtained by “pulling up” low estimated risks

to tlwr
j,a , “pulling down” high estimated risks to tuprj,a , and leaving unchanged intermediate risks. An example

of a risk vector in minimization normal form is shown in Figure 1.
This observation reduces the dimension of the search space from n − 2m to 2m; that is, by the above,

one need only search over the 2m thresholds. One can, however, do better. A careful examination of the
KKT conditions reveals that while the thresholds tlwr

j,a and tuprj,a may vary by stratum, the gap between them

∆ = tuprj,a − tlwr
j,a must be the same across strata. Moreover, once ∆ is fixed, the thresholds tlwr

j,a and tuprj,a are
determined by the strata-specific average risks ρj and τj . As a result, finding the minimizing risk vector for
the simplified problem reduces to optimizing over a single parameter, ∆, which, in our setting, can be done
very efficiently. In particular, we give an O(n · log(m)) algorithm that finds the exact solution.

Maximization requires more care, since the maximization problem is non-convex, and the general problem
of maximizing a quadratic objective over a convex set is NP-hard (Sahni, 1974). Using a similar, but more
delicate, version of the techniques used to minimize the simplified problem, we give an O(m ·(ϵ/γ)2+n)-time
algorithm for approximating the maximum of the simplified problem. The key steps described above for
optimizing the base problem are given in Algorithm 1.

Putting these results together, we have the following theorem, the proof of which is given in Appendix B.

Theorem 4.2. Suppose the constraints are sortable. Consider Algorithm 1 with step-size parameters η and
γ and maximum average absolute deviation ϵ. Let δ∗ denote the true optimum of the base problem, and
let δ† denote the value of the objective returned by Algorithm 1. Then, there exists a constant c0 such that
Algorithm 1 runs in time at most

c0
(
n · log(n) +m/γ2

)
· η−m.

Moreover, there exists a constant c1 and a problem-specific constant V (ϵ) (i.e., depending on R̂i, ℓi, ui, and

9



Algorithm 1 (Sensitivity analysis)

Input: The estimated risk vector R̂, the lower and upper bounds ℓ and u, the average absolute difference
ϵ, and the step-size parameters η and γ.
Output: The minimum and maximum values of β̂j − β̂1 for all groups j = 1, . . . ,m.

1: Set ρj ← 1
|Sj,1| ·

∑
i∈Sj,1

R̂i for j = 1, . . . ,m

2: Generate a grid of (τ1, . . . , τm) with step size η
3: repeat
4: Calculate R∗

min minimizing the simplified problem with ρ1, . . . , ρm and τ1, . . . , τm
5: Calculate R∗

max maximizing the simplified problem to within 2nmγ with ρ1, . . . , ρm and τ1, . . . , τm
6: Calculate β̂j − β̂1 using both R∗

min and R∗
max

7: until The grid of (τ1, . . . , τm) is exhausted
8: return The largest and smallest differences βj − β1 observed for all j = 2, . . . ,m

ϵ) such that

|δ∗ − δ†| ≤ c1 ·m(η + γ)

V (ϵ)2
.

We give the definition of V (ϵ) in Eq. (32) in Appendix B. Roughly, V (ϵ) is related to the within-group
variance of the estimated risks V ,

V =
1

n

m∑
j=1

nj ·Var
(
(R̂i)i∈Gj

)
.

In particular, V (ϵ) ≥ V − 4ϵ. Moreover, V (ϵ) is positive whenever the base problem has a finite solution.
In our principal application, it takes a few seconds on standard hardware for the algorithm to run for 100
values of ϵ with m = 3 race groups and n > 106 observations with negligible approximation error.

As we noted previously, our approach to sensitivity analysis for risk-adjusted regression is related to
sensitivity analysis methods developed in the causal inference literature, particularly to recent work on
L2 sensitivity bounds (Huang and Pimentel, 2022; Zhang and Zhao, 2022). Our approach, however, is
distinct in important ways that make it uniquely advantageous in our setting. First, methods for sensitivity
analysis in the causal inference literature that can be adapted to our setting often involve a large number
of parameters—making them difficult to credibly calibrate—or require parametric assumptions on the form
of the confounding itself (e.g., Cinelli and Hazlett, 2020; Jung et al., 2020; Rosenbaum, 2002; Rosenbaum
and Rubin, 1983a). In contrast, the single parameter in our sensitivity analysis—ϵ, the average absolute
deviation between the true and estimated risks—is straightforward to reason about and explain, particularly
to policymakers or other non-technical stakeholders.

Further, most past sensitivity methods that do involve a single parameter would, if suitably adapted to
our setting, be parameterized in terms of an L∞-bound Γ on the log odds ratio between true and estimated
risks (e.g., Dorn and Guo, 2022; Zhao et al., 2019). However, in realistic models of confounding, the change
in the odds ratio typically cannot be bounded in this way for all units: some—potentially very small—set
of units will have an estimated risk of approximately 0 but a true risk of approximately 1 or vice versa. As
a result, one may need to set Γ to be very large to strictly satisfy the assumptions of the approach, yielding
sensitivity bounds that are, in practice, quite conservative. More recent methods involving L2 bounds avoid
this problem (Huang and Pimentel, 2022; Zhang and Zhao, 2022), but would not yield tight bounds on the
estimand of interest in our setting.

5 An Application to Policing

We apply our approach above to investigate the “stop-and-frisk” practices of the New York City Police
Department (NYPD).8 Police officers in the United States may stop and question pedestrians if they have

8Reproduction materials for this analysis are available at https://github.com/jgaeb/rar-repro.
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“reasonable and articulable” suspicion of criminal activity; officers may additionally conduct a “frisk” (i.e., a
brief pat-down of one’s outer garments) if they believe the stopped individual is carrying a weapon. Although
a policy of stopping and frisking individuals is not inherently illegal, in Floyd v. City of New York (2013),
a federal district court ruled that the NYPD carried out such stops with racial animus, violating the Equal
Protection Clause of the Fourteenth Amendment.

The court in Floyd was interested in assessing claims of disparate treatment; here we re-analyze the
data with a focus on disparate impact. We specifically consider frisk decisions, as they have a clear goal
of ensuring officer safety by recovering weapons, and a well-measured outcome—whether a weapon was
in fact found. We study 2.2 million pedestrian stops that occurred between 2008 and 2011. For each
stop, we have detailed information on the date, time, and location of the stop; the demographics of the
stopped individual (e.g., age, gender, and race); the suspected crime; the reasons prompting the stop (e.g.,
“furtive movements” or “suspicious bulge”); and additional circumstances surrounding the stop (e.g., evasive
responses to questioning, witness reports, or evidence of criminal activity in the vicinity).9

To start, we note that 1.7% of frisks turn up a weapon. White pedestrians are frisked in 44% of police
stops, whereas Black and Hispanic pedestrians are frisked in 57% and 58% of stops, respectively, a 13–14
percentage point gap. These raw disparities are computed without adjusting for any potentially explanatory
variables, and so represent an extreme case of omitted-variable bias. At the other extreme is the “kitchen
sink regression”, which adjusts for all observed pre-frisk covariates in a standard linear probability model. In
this case, stopped Black and Hispanic pedestrians are 3–4 percentage points more likely to be frisked, relative
to white pedestrians with similar recorded characteristics. These kitchen-sink disparities are suggestive of
disparate treatment (and similar evidence was indeed presented to the court in Floyd to support such an
allegation), but they may understate the extent to which the policy imposes an unjustified disparate impact
on racial minorities, due to included-variable bias.

5.1 Estimating risk-adjusted disparities

The key ingredient in applying risk-adjusted regression is estimating the risk R = Pr(W = 1 | X), as in
Eq. (3), where W indicates whether a stopped individual has a weapon and X is the information available to
the officer when making their frisk decision. There are, however, two challenges to estimating this quantity.
First, the information available to officers typically differs from that recorded in administrative datasets
available to analysts. Second, W remains unobserved for individuals who were not frisked. These challenges
can be mitigated, but not eliminated. Our approach is thus to estimate these risks as best we can, and then
gauge the robustness of our results to estimation error. For ease of exposition, we adopt a simple estimation
strategy, regressing weapon possession (W ) on the covariates X̃ in the recorded data, fit on the subset of
individuals who were, in reality, frisked.10 These estimates suffer from some degree of omitted-variable bias
and selection effects, an issue we return to in our sensitivity analysis below.

We start by dividing the original stops into two subsets: (1) the approximately 1 million stops that
occurred in 2008 and 2009, which we use to train a risk model; and (2) the remaining 1.2 million stops that
occurred in 2010 and 2011, to which we apply the fitted risk model to estimate disparities in frisk decisions.
To estimate risk of weapon possession, we use gradient boosted decision trees, a non-linear model popular
in the machine learning community for its predictive performance, restricting to stops in the first subset of
data in which a frisk was conducted. Predictive performance and model checks presented in Figure 14 in
Appendix E indicate that the model yields predictions with reasonable performance and that predictions
are well-calibrated across groups. We use this fitted model to produce an estimate of ex ante risk R̂i for
every pedestrian stopped in the second subset of the data, including those who were not frisked. These risk
estimates are shown in Figures 12 and 13

Figure 2 shows frisk rates as a function of estimated risk, disaggregated by race. At every level of risk,

9This information is recorded in a standardized way on UF-250 forms that officers are required to complete after each stop.
A copy of the form can be found online.

10Our approach to estimating risk is not the only one, or even the best in any given instance. For example, one could, in
theory, partially address the selection problem by requiring that some subset of individuals be randomly frisked, as is sometimes
done at roadside checkpoints and airports—though this raises legal, ethical, and logistical difficulties. Alternatively, one could
look for officers who frisk almost everyone they stop—similar to recent approaches for studying judicial decision-making (e.g.,
Dobbie et al., 2018; Kleinberg et al., 2018). Both of these alternatives come with their own limitations, meaning that sensitivity
analysis is still critical to credible inference.
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Figure 2: Frisk rates vs. risk, as estimated via logistic regression curves fit separately for each race group.
Across risk levels, stopped Black and Hispanic pedestrians are frisked substantially more frequently than
comparably risky white individuals, indicative of disparate impact.

stopped Black and Hispanic pedestrians are frisked at a much higher rate than stopped white individuals, a
gap that is suggestive of disparate impact in frisk decisions. To add quantitative detail to these qualitative
results, we now compute risk-adjusted disparities, fitting the linear probability model in Eq. (5) on the second

half of the NYPD data, computing estimates for the Black-white disparity β̂Black−β̂White and Hispanic-white
disparity β̂Hispanic− β̂White. Figure 3 shows the results, together with the raw disparities and those estimated
from a kitchen-sink model. We find that stopped Black and Hispanic pedestrians were about 15 percentage
points more likely to be frisked than white pedestrians who were equally likely to be carrying a weapon.
Further, the risk-adjusted disparities are in fact greater than the raw disparities in frisk rates. To understand
why, we note that stopped white pedestrians were, on average, more likely to be carrying a weapon yet less
likely to be frisked than racial minorities; as a result, the risk-adjusted gap in frisk rates is even larger than
the raw, unadjusted gap. Finally, we see that the kitchen-sink regression dramatically underestimates the
extent of disparate impact faced by minorities. In this case, the kitchen-sink model adjusts for a variety
of features—including whether the stopped individual made “furtive movements”—that are correlated with
race but are poor predictors of weapon possession, skewing estimates of disparate impact.11

5.2 Sensitivity analysis

The disparities computed above aim to circumvent included-variable bias by adjusting for each individual’s
estimated risk. But our estimates of risk may themselves be skewed if officers observe factors that are
predictive of risk but are not recorded in our data. To account for this possibility, Figure 4 displays worst-
case bounds on our estimate of disparate impact as a function of the mismatch between true and estimated
risk—operationalized in terms of ϵ, as defined in Eq. (6); see Appendix C for further details on how the
bounds are computed. To ease interpretation, the horizontal axis in the plot is expressed in terms of the
relative average absolute difference between the true and estimated risks: ϵ divided by the overall weapon
recovery rate among frisked individuals (1.7%). Our analysis shows that large risk-adjusted disparities remain
even if we allow the true risk to differ considerably from our risk estimates. In particular, we would find
large disparate impacts for both Black and Hispanic pedestrians even if the true risks differed from our risk

11We exclude hair color and eye color from the kitchen-sink model, since these are obvious proxies for race that are effectively
unrelated to risk, and would thus be excluded in most traditional legal and statistical analyses of discrimination. As we would
expect, including these variables as controls exacerbates the problem of included-variable bias, but our results show that such
bias can occur even if obviously problematic variables are excluded.
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Figure 3: Racial gaps in frisk rates adjusting for different sets of covariates, where the y-axis shows the
percentage point difference relative to stopped white individuals. The left panel shows the raw disparities in
frisk rates. As a measure of discrimination, raw disparities suffer from omitted-variable bias: there may, in
theory, be legitimate reasons why Black and Hispanic pedestrians are more likely to be frisked. The middle
panel shows the estimated race effects in a kitchen-sink regression, adjusting for all pre-frisk covariates. These
estimates suffer from included-variable bias because they adjust for features that are correlated with race but
unrelated to risk. The right panel shows the results of our risk-adjusted regression, adjusting exclusively for
estimated risk of weapon possession. In all cases, estimated standard errors are less than 0.2 percentage
points, and so are not visible in the plot.

estimates by 50% of the base rate.
It is impossible to know the precise extent to which our risk estimates differ from the true risk. To

understand the plausible magnitude of the discrepancy, we conduct a simulation in which we remove a
key set of risk-relevant covariates from the data, estimate risk based on the reduced information, and then
measure differences between the original and new risk estimates. Specifically, we remove variables listed in
two sections of the UF-250 stop forms that describe the “circumstances” prompting the encounter. These
sections each consist of 10 binary variables—including, for example, “fits description”, “actions indicative
of casing”, and “changing direction at sight of officer”—that are crucial for establishing the legal basis of
the stop. We then compute the average absolute difference between our original risk estimates based on the
full, uncensored data and the risk estimates based on the redacted data.12 We find that this value is 0.7
percentage points—or 44% of the base rate—which we take as an estimate of ϵ in a scenario with severe
unobserved confounding. As shown in Figure 4, this level of error (indicated by the dashed vertical lines)
would yield an estimate of disparate impact that is, at a minimum, greater than 7.5 percentage points for
both Black and Hispanic individuals. This sensitivity analysis suggests our results are robust to substantial
unobserved confounding.

6 Discussion

We have sought to develop a simple, intuitive framework for addressing the most serious concerns of included-
and omitted-variable bias in disparate impact studies. On a detailed dataset of police stops, we found
that these concerns are more than hypothetical possibilities. In particular, regressions that adjust for all
available covariates—in line with common legal and statistical convention—can substantially skew estimates

12As above, we use gradient boosted decision trees to estimate the probability of frisk conditional on the remaining, uncensored
covariates.
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Figure 4: Sensitivity of the risk-adjusted disparities in frisk decisions to mismeasurement of risk. The blue
bands bound our estimates of disparate impact as a function of the average absolute difference between the
true and estimated risks ϵ, relative to the base rate (1.7%). The dotted line at 44% (ϵ = 0.7 p.p.) corresponds
to a simulated situation with severe confounding. The small grey bands along the top and bottom of the blue
bands represent 95% percentile bootstrapped confidence intervals (N = 1000; Zhao et al., 2019). The step
size for the grid search over average risks of the unobserved strata was η = 0.05 p.p. for all groups, and
γ = 0.01 p.p. was the approximation parameter for the maximization routine; see Appendix B.

of disparate impact.
Our risk-adjusted regression framework is subject to some important limitations. First, our method

requires access to an outcome to estimate risk. In some instances, this information is not available to
analysts. In other cases, it is not even clear how to rigorously define the relevant outcome. For example,
in college admissions, decision makers often care about multiple factors in hard to quantify ways (Garg
et al., 2021; Grossman et al., 2023b). Second, to credibly estimate risk, analysts need sufficiently rich
covariate data. Our sensitivity analysis helps mitigate omitted-variable bias, but it cannot replace better
data. Third, and relatedly, analysts may not have access to race or other relevant protected characteristics,
complicating the analysis. There has, however, been recent progress on estimating disparities using auxiliary
data sources (e.g., Kallus et al., 2022; McCartan et al., 2023). Finally, we have modeled decisions using
linear probability models with constant slope across groups. It is straightforward to estimate risk-adjusted
disparities with more flexible decision models. However, relaxing this assumption makes it harder to gauge
the sensitivity of the inferred disparities to inaccurate risk estimates.

Throughout our analysis, we have estimated “disparate impact” by a regression coefficient on protected-
group identity in a model that adjusts for estimated risk. This procedure is analogous to current practice
in discrimination studies, where we simply replace the usual set of control variables with a single variable
capturing risk. As seen by our formalization of disparate impact in Eq. (4), we are effectively measuring a
particular weighted average of differences in decision rates across individuals of similar risk. While intuitively
reasonable, this definition raises subtle questions of law and policy.

Consider, for example, Figure 2, where we plot race-specific frisk rates as a function of risk. Stopped
Black and Hispanic pedestrians are frisked more often than stopped white pedestrians at every level of
risk. As a result, one would find that racial minorities face disparate impact regardless of how one averages
across risk levels; the precise number might change, but the qualitative conclusion would remain the same.
However, comparing Black and Hispanic pedestrians, the direction of the disparity depends on the risk level
one considers.13 Low-risk Hispanic individuals are frisked more often than low-risk Black individuals, but

13Such a comparison between minority groups is unusual in disparate impact cases, but it illustrates the underlying theoretical
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high-risk Black individuals are frisked more often than their high-risk Hispanic counterparts. Consequently, a
conclusion of disparate impact between Black and Hispanic pedestrians would depend heavily on the precise
definition applied. The analysis is further complicated if the risk distributions differ substantially between
groups. If, hypothetically, stopped Hispanic pedestrians were mostly low-risk and stopped Black pedestrians
mostly high-risk, majorities of both groups could argue that they were treated more harshly than members
of the other group who were equally likely to be carrying a weapon.14

The crossing of risk curves that we see in Figure 2 is a potentially widespread phenomenon, and, to our
knowledge, disparate impact law has not yet resolved the underlying conceptual ambiguity it invokes. Many
discussions of disparate impact tacitly assume that policies either consistently harm or help groups defined
by protected traits. Such thinking can be seen in the original Griggs ruling, where the Supreme Court
aimed to proscribe policies that acted as “built-in headwinds” for racial minorities. But, formally, disparate
impact law concerns facially race-neutral policies, not intentional discrimination, and there is no theoretical
or empirical guarantee that such policies will adversely impact all members of a particular group.

A related issue is the extent to which concern for unjustified disparities compels decision makers to act
optimally. This concern connects most closely to the third element of legal tests of disparate impact outlined
in Section 2 above, namely, the existence of a less discriminatory alternative policy. For example, Figure 2
suggests that officers are only marginally responsive to risk, with the lowest-risk individuals still frisked more
than 40% of the time. If, instead, officers frisked only the people with high probability of carrying a weapon,
they could frisk far fewer individuals—and, in particular, far fewer minority individuals—while recovering
almost the same number of weapons (Goel et al., 2016a). A more efficient frisk strategy could thus reduce
the burdens of policing on racial minorities while still maintaining public safety. Such efficiency is indeed
one of the aims of statistical risk assessment tools that are now used in the criminal justice system and
beyond to guide high-stakes decisions (Chouldechova et al., 2018; Corbett-Davies et al., 2023; Goel et al.,
2021; Monahan and Skeem, 2016; Shroff, 2017). If these tools are shown to reduce racial disparities, are
policymakers obliged—legally or ethically—to adopt them? The role of efficiency in disparate impact claims
has largely gone unanswered by the courts, adding yet another subtlety to defining and measuring disparities.
Researchers have only recently taken up these questions (Bohren et al., 2022; Corbett-Davies et al., 2023;
Elzayn et al., 2023; Grossman et al., 2023a; Raghavan, 2023).

By foregrounding the role of risk in understanding disparities, we have aimed to clarify some of the thorny
conceptual issues at the heart of disparate impact analysis. While there are still important unresolved
questions, we believe that our statistical approach provides practitioners with a tractable way to assess
disparities in many domains while avoiding some important pitfalls of traditional methods. Looking forward,
we hope this work spurs further theoretical and empirical research on discrimination at the intersection of
statistics, economics, law, and public policy.

issue.
14Some scholars have similarly investigated interactions between race and other decision-making criteria. For example,

Espenshade et al. (2004) find that preferences for underrepresented minorities in college admissions is greatest for applicants
with SAT scores in the 1200–1300 range, and the effect is attenuated at lower scores. That analysis, however, found no score
ranges where minority applicants faced an absolute disadvantage relative to white applicants with equal scores. We do not know
of any research that has found a change in the direction of the disparities like we see between Black and Hispanic pedestrians
in Figure 2.
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A Formalization of Griggs

We begin by proving the results from Section 2.2 for the parametric formulation of the problem, and then
use the parametric results to prove the non-parametric claims.

A.1 Linear Regression Formulation

Recall that the OLS coefficient estimates are given in this case by
n∑

i=1


1 X0,i X1,i X0,i ·X1,i Ci

X0,i X2
0,i X0,i ·X1,i X2

0,i ·X1,i X0,i · Ci

X1,i X0,i ·X1,i X2
1,i X0,i ·X2

1,i X1,i · Ci

X0,i ·X1,i X2
0,i ·X1,i X0,i ·X2

1,i X2
0,i ·X2

1,i X0,i ·X1,i · Ci

Ci X0,i · Ci X1,i · Ci X0,i ·X1,i · Ci C2
i




−1
n∑

i=1


Ai

X0,i ·Ai

X1,i ·Ai

X0,i ·X1,i ·Ai

Ci ·Ai




Note that because of the matrix inversion, we can divide both sums by n. Therefore, applying the continuous
mapping theorem and the strong law of large numbers, we see that this converges to

1 E[E] E[H] E[E ·H] E[C]
E[E] E[E2] E[E ·H] E[E2 ·H] E[E · C]
E[H] E[E ·H] E[H2] E[E ·H2] E[H · C]

E[E ·H] E[E2 ·H] E[E ·H2] E[E2 ·H2] E[E ·H · C]
E[C] E[E · C] E[H · C] E[E ·H · C] E[C2]


−1 

E[A]
E[E ·A]
E[H ·A]

E[E ·H ·A]
E[C ·A]

 .

Now, recalling the joint and marginal distributions of these variables, we have that

E[E] =
1

2
, E[H] =

1

2
, E[C] =

1

2
.

Moreover,

E[E2] =
1

3
, E[H2] =

1

2
, E[C2] =

1

2
.

By the definition of covariance,

ρ =
E[H · C]− E[H] · E[C]√

Var(H) ·Var(C)
=

E[H · C]− 1
4√

1
4 ·

1
4

= 4 · E[H · C]− 1,

whence E[H · C] = ρ+1
4 . By independence,

E[E ·H] = E[E] · E[H] =
1

4
, E[E · C] = E[E] · E[C] =

1

4
,

E[E2 ·H] = E[E2] · E[H] =
1

6
, E[E ·H2] = E[E ·H] =

1

4
,

E[E2 ·H2] = E[E2 ·H] =
1

6
, E[E ·H · C] = E[E] · E[H · C] =

ρ+ 1

8
,

16



Finally,

E[A] = E[E[A | E,H]] E[E ·A] = E[E[E ·A | E,H]]

= E[E ·H] = E[E2 ·H]

=
1

4
, =

1

6
,

E[H ·A] = E[E[H ·A | E,H]] E[E ·H ·A] = E[E[E ·H ·A | E,H]]

= E[E ·H2] = E[E2 ·H2]

=
1

4
, =

1

6
,

E[C ·A] = E[E[C ·A | E,H,C]]

= E[E ·H · C]

=
ρ+ 1

8
.

Thus, we have that
1 E[E] E[H] E[E ·H] E[C]

E[E] E[E2] E[E ·H] E[E2 ·H] E[E · C]
E[H] E[E ·H] E[H2] E[E ·H2] E[H · C]

E[E ·H] E[E2 ·H] E[E ·H2] E[E2 ·H2] E[E ·H · C]
E[C] E[E · C] E[H · C] E[E ·H · C] E[C2]


−1
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1
1

2

1

2

1

4

1

2

1

2

1

3

1

4

1

6

1

4

1

2

1

4

1

2

1

4

ρ+ 1

4

1

4

1

6

1

4

1

6

ρ+ 1

8

1

2

1

4

ρ+ 1
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1
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−1

=



7ρ+9
ρ+1 −12 − 6ρ+8

ρ+1 12 − 2
ρ+1

−12 24 12 −24 0

− 6ρ+8
ρ+1 12 12∗ρ2−16

ρ2−1 −24 4ρ
ρ2−1

12 −24 −24 48 0

− 2
ρ+1 0 4ρ

ρ2−1 0 − 4
ρ2−1


and so the OLS regression coefficients converge almost surely to



7ρ+9
ρ+1 −12 − 6ρ+8

ρ+1 12 − 2
ρ+1

−12 24 12 −24 0

− 6ρ+8
ρ+1 12 12∗ρ2−16

ρ2−1 −24 4ρ
ρ2−1

12 −24 −24 48 0

− 2
ρ+1 0 4ρ

ρ2−1 0 − 4
ρ2−1





1

4

1

6

1

4

1

6

ρ+ 1

8



=



0

0

0

1

0



.
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On the other hand, if the analyst were to drop high school graduation from their regression, then we
would have that the regression coefficients converge almost surely to

 1 E[E] E[C]
E[E] E[E2] E[E · C]
E[C] E[E · C] E[C2]

−1  E[A]
E[E ·A]
E[C ·A]

 =



1
1

2

1

2

1

2

1

3

1

4

1

2

1

4

1

3



−1 

1

4

1

6

ρ+ 1

8


=



−ρ

4

1

2

ρ

2


.

A.2 Nonparametric Formulation

Recall the two different non-parametric estimands:

E[E[A | E,H,C = 1]− E[A | E,H,C = 0]]

and
E[E[A | E,C = 1]− E[A | E,C = 0]].

We note that in the first case, since E[A | E,H,C] = E ·H, we have that

E[E[A | E,H,C = 1]− E[A | E,H,C = 0]] = E[E ·H − E ·H] = 0.

In the second case, using the expectations calculated above, we have that

E[A | E,C = c] = E[A | E,H = 1, C = c] · Pr(H = 1 | E,C = c)

+ E[A | E,H = 0, C = c] · Pr(H = 0 | E,C = c)

= E · Pr(H = 1 | E,C = c)

= E · Pr(H = 1 | C = c)

= E · E[H · C]

E[C]

= E ·
1−(−1)c·ρ

4
1
2

= E · 1− (−1)c · ρ
2

.

Here we have used the fact that A = 0 when H = 0 in the second equality, the independence of H from E
and C in the third, and various expectations calculated above in the remaining equalities. Thus, it follows
that

E[E[A | E,C = 1]− E[A | E,C = 0]] = E
[
E · 1 + ρ

2
− E · 1− ρ

2

]
= E[E · ρ] = ρ

2
.

This exactly equals β′
C in the second regression.

B Sensitivity Analysis

In what follows, we formally justify the sensitivity analysis laid out in Section 4, deriving algorithms to
efficiently solve the optimization problem it gives rise to and rigorously verifying their correctness and run-
times. This discussion is structured in three parts. In the first part, by introducing a new low-dimensional
family of parameters, we show how to reduce the base optimization problem of Eq. (8) into the simplified
problem of Eq. (9). In the second and third parts, we show how to efficiently find the minimum and maximum
values of the simplified optimization problem, respectively.
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Remark B.1. In the main text, to for expositional clarity, we parameterized our optimization problems in
terms of average risks. However, it is mathematically more natural to work with the total risks. Therefore,
throughout this appendix we let ρj and τj denote the total risk in each stratum, i.e., we rewrite the relevant
constraints of the base problem and the simplified problem as follows:∑

i∈Sj,1

Ri = ρj ,
∑

i∈Sj,0

Ri = τj .

B.1 Simplifying the objective

To simplify the optimization problem in Eq. (8), we can avail ourselves of the fact that OLS has a closed-form
solution. We augment the notation in Section 4 as follows:

Gj = Sj,0 ∪ Sj,1 = { i : Ci = j },

i.e., Gj denotes the set of indices belonging to the j-th group.

Lemma B.2. Let nj = |Gj | > 0 denote the number of individuals in the j-th group; let σj denote the search
rate in group j, i.e., σj =

1
nj

∑
i∈Gj

Ai; and let rj and tj denote

rj =
∑

i∈Sj,1

Ri, tj =
∑

i∈Sj,0

Ri,

i.e., the total risk of the searched and unsearched individuals belonging to the j-th group, respectively.
If Ri is constant within each of the m groups, then the OLS estimate need not exist due to collinearity.

Otherwise, the OLS estimate of the coefficients β̂ in Eq. (5) satisfies

β̂ =


σ1

...
σm

0

+

1
n

[∑m
j=1 σj · tj − (1− σj) · rj

]
1
n

[∑n
i=1 R

2
i −

∑m
j=1

(rj+tj)2

nj

]


r1+t1
n1

...
rm+tm

nm

−1

 . (10)

Proof. Recall that our design matrix and outcome variables take the form

X =

1(C1 = 1) . . . 1(C1 = m) R1

...
. . .

...
...

1(Cn = 1) . . . 1(Cn = m) Rn

 , Y =

A1

...
An

 .

The OLS estimate of the coefficients β̂ is then simply (X⊤X)−1X⊤Y.
Note that by definition, we have that

X⊤X =


n1

∑
i∈G1

Ri

. . .
...

nm

∑
i∈Gm

Ri∑
i∈G1

Ri . . .
∑

i∈Gm
Ri

∑n
i=1 R

2
i

 =


n1 r1 + t1

. . .
...

nm rm + tm

r1 + t1 . . . rm + tm
∑n

i=1 R
2
i

 .

Similarly,

X⊤Y =


∑

i∈G1
Ai

...∑
i∈Gm

Ai∑n
i=1 Ri ·Ai

 =


n1 · σ1

...

nm · σm∑m
j=1 rj

 .

Note that X⊤X has the form [
D v⊤

v
∑n

i=1 R
2
i ,

]

19



where D is diagonal. Then, we see that since D is invertible, it follows that X⊤X is invertible if the Schur
complement of the D is invertible, i.e., non-zero; that is, if

n∑
i=1

R2
i −

m∑
j=1

(rj + tj)
2

nj
̸= 0.

Recalling the definitions of rj and tj , we see that the left-hand expression equals

m∑
j=1

∑
i∈Gj

(
Ri −

rj + tj
nj

)2

=

m∑
j=1

nj ·Var
(
(Ri)i∈Gj

)
.

Now, the variance of a set is only zero if all the elements of the set are equal, i.e., if for all i ∈ Gj , Ri equals

the average risk in that group,
rj+tj
nj

.

Assume this is not the case, i.e., that X⊤X is invertible. Since X⊤X is an arrowhead matrix, we can
invert it using the Sherman-Morrison Formula. In particular, we obtain that

(X⊤X)−1 =


1
n1

. . .
1

nm

0

+
1∑

R2
i −

∑m
j=1

(rj+tj)2

nj


r1+t1
n1

...
rm+tm

nm

−1




r1+t1
n1

...
rm+tm

nm

−1


⊤

. (11)

Combining this with the expression derived for X⊤Y above and dividing the numerator and denominator
by n yields that

β̂ =


σ1

...
σm

0

+

1
n

[∑m
j=1 σj · tj − (1− σj) · rj

]
1
n

[∑
R2

i −
∑m

j=1
(rj+tj)2

nj

]


r1+t1
n1

...
rm+tm

nm

−1

 . (12)

We note that Lemma B.2 provides the following useful condition on when the base problem has a mean-
ingful solution:

Corollary B.3. The maximum and minimum values of the base problem are both finite if and only if it is
not the case that ℓi ≤ ρj ≤ ui for all i ∈ Gj and j = 1, . . . ,m, and in addition

1

n

m∑
j=1

∑
i∈Gj

∣∣∣∣R̂i −
ρj
nj,1

∣∣∣∣ ≤ ϵ.

Proof. The proof follows immediately from noting that since the averages of the risks on the observed strata
Sj,1 are fixed at ρj , the risks for the whole j-th group can only all be equal if the risks of the observed and
the unobserved individuals are uniformly equal to ρj .

The following corollary completes the simplification of the optimization problem in Eq. (8) in the case
where the average true risk in the unobserved strata is also assumed known (“the parameterized prob-
lem” of Section 4),15 i.e., of

Optimize
R∈Rn

β̂j∗ − β̂1

s.t. 1
n

∑n
i=1 |Ri − R̂i| ≤ ϵ,∑

i∈Sj,1
Ri = ρj , (j = 1, . . . ,m)∑

i∈Sj,0
Ri = τj , (j = 1, . . . ,m)

Ri ≤ ui, (i = 1, . . . , n)
Ri ≥ ℓi. (i = 1, . . . , n)

(13)

15See Remark B.1 above for the slight difference in notation between here and Section 4.
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Corollary B.4. The optimal solutions of the parameterized problem in Eq. (13), if they are both well-defined,
are also the optimal solutions of the simplified problem in Eq. (9).

Proof. Let β̂ be as in Eq. (5), and rj and tj as in Lemma B.2.16 Then, it follows directly from Eq. (10) that
we have that for all R,

β̂j − β̂1 = σj − σ1 +

1
n

[∑m
j=1 σj · tj − (1− σj) · rj

]
1
n

[∑n
i=1 R

2
i −

∑m
j=1

(rj+tj)2

nj

] (rj + tj
nj

− r1 + t1
n1

)
.

Since the constraints of the parameterized problem fix rj = ρj and tj = τj for all feasible R, the objective
function of the parameterized problem has the form

a+
b

x− c
, (14)

where

a = σj − σ1,

b =
1

n

 n∑
j=1

σj · τj − (1− σj) · ρj

 · (ρj + τj
nj

− ρ1 + τ1
n1

)
,

c =
1

n

m∑
j=1

(ρj + τj)
2

nj
,

x =
1

n

n∑
i=1

R2
i .

If b = 0, then the objective does not depend on R, and so there is nothing to prove. Otherwise, by
continuity and the fact that the feasible region is convex, and hence connected, and compact, the range of
the objective in Eq. (9) over the feasible region is a closed interval I. As shown in the proof of Lemma B.2
and Corollary B.3, x ≥ c, and x > c if the optima are both well-defined. Consequently, we can assume
the interval is strictly positive, i.e., I ⊆ (c,∞). The derivative of Eq. (14) exists everywhere on I and is,
moreover, non-zero and continuous, and so a+ b

x−c is strictly monotone on I. Therefore, the maximum and
minimum must occur at the endpoints, i.e., at the maximum and minimum values of x.

We note that since b is not guaranteed to be positive, the maximum of the simplified problem in Eq. (9)
does not necessarily correspond to the maximum of the base problem in Eq. (8) and vice versa.

B.2 Minimization

In the case of minimization, the simplified problem in Eq. (9) defines a convex optimization problem, which,
as noted in Section 4 above, can consequently be solved efficiently using standard interior-point methods.
However, these results can be improved in a problem-specific way to yield a simpler, and, in practice, more
computationally tractable method of finding exact solutions. Moreover, they parallel the solution method for
maximization, which is not a convex problem, and hence to which standard interior point methods cannot
be applied.

B.2.1 Optimizing over a single stratum

We begin by solving a simpler version of the problem, where we restrict to a single stratum. In the case
of minimization—as in the case of maximization, as we show below—solutions to the minimization problem
must be in a certain normal form. While searching over all risk vectors is prohibitively difficult, searching
over normal form risk vectors can be done straightforwardly in linear time.

16In particular, strictly speaking, β̂, rj , and tj should be written β̂(R), rj(R), and tj(R), since they depend on R.
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Definition B.5 (Minimization normal form). We say that a risk vector R is in minimization normal form if
there exist thresholds tlwr

a,j and tupra,j such that for i ∈ Sj,a,

Ri =


min(ui, t

lwr
a,j ) R̂i ≤ tlwr

a,j ,

R̂i tlwr
a,j ≤ R̂i ≤ tupra,j ,

max(ℓi, t
upr
a,j ) tupra,j ≤ R̂i,

and, in addition, tupra,j − tlwr
a,j is equal to some ∆ for all a = 0, 1 and j = 1, . . . ,m.

In the context of a single stratum, we refer to tupr and tlwr for notational simplicity. We also assume that
Sj,a = {1, . . . , n} for the same reason.

Minimization normal form results from “pushing” R̂i up to tlwr or down to tupr as far as possible. An
example of a risk vector in minimization normal form is shown in Figure 1. As the name suggests, risk
vectors minimizing the objective must be in minimization normal form.

Lemma B.6. Consider the optimization problem (“the single stratum minimization problem”)

Minimize
R∈Rn

1

n

n∑
i=1

R2
i

s.t. 1
n

∑n
i=1 |Ri − R̂i| ≤ ϵ,∑n

i=1 Ri = µ,
Ri ≤ ui, (∀i)
Ri ≥ ℓi. (∀i)

(15)

Suppose that R∗ is a minimizer. Then, R∗ is unique and in minimization normal form. Moreover, R∗

exhausts the L1 budget, in the sense that either 1
n∥R

∗ − R̂∥1 = ϵ or tlwr = tupr.

Proof. The proof proceeds by examining the first-order KKT conditions to derive weak necessary conditions
that solutions must satisfy. These conditions are then strengthened to minimization normal form by directly
comparing the objective function at different points satisfying the weak conditions. Finally, we show that
the minimum is the point satisfying the “strengthened” conditions which is most distant from R̂, i.e., that
exhausts the budget.

The problem is simplified by rewriting the first constraint as a collection of linear (and hence everywhere

differentiable) constraints. In particular, 1
n∥R − R̂∥1 ≤ ϵ is equivalent to the 2n constraints of the form

S⊤(R− R̂) ≤ ϵ · n for all S ∈ {−1, 1}n. We assume throughout, without loss of generality, that ℓi < ui.

Weak conditions Let ei denote the i-th standard basis vector and 1 =
∑n

i=1 ei. Note that:

• The gradient of the objective is 2
n ·R;

• The gradient of S⊤
k (R− R̂)− ϵ

n , where {S1, . . . ,S2n} = {−1, 1}n, is Sk;

• The gradient of
∑n

i=1 Ri is 1;

• The gradient of Ri − ui is ei ei;

• The gradient of ℓi −Ri is −ei.

The first-order necessary KKT conditions therefore require that17

2 ·R∗ − λ · 1+

n∑
i=1

µ0,i · ei −
n∑

i=1

µ1,i · ei +
2n∑
k=1

νk · Sk = 0 (16)

17For notational simplicity, we have multiplied through by n and absorbed constants into the corresponding Lagrange multi-
pliers.
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for some arbitrary λ, and for non-negative µ0,i, µ1,i, and νk for k = 1, . . . , 2n satisfying complementary

slackness, i.e., such that µ0,i · (R∗
i − ui) = 0, µ1,i · (ℓi − R∗

i ) = 0, and νk · (S⊤
k (R

∗ − R̂) − n · ϵ) = 0 for all
i = 1, . . . , n and k = 1, . . . , 2n.

These consequences allow us to prove the following weak characterization of R∗. Let ∆ =
∑2n

k=1 νk.
Then, for all i,

R∗
i ∈

{
R̂i, ui, ℓi,

1

2
· [λ−∆],

1

2
· [λ+∆]

}
. (17)

For, from (16), we get that

2 ·R∗
i − λ+ µ0,i − µ1,i +

2n∑
k=1

νk · Sk,i = 0, (18)

where Sk,i refers to the k-th component of Sk. If R
∗
i = R̂i, there is nothing to prove. Therefore, assume that

R∗
i ̸= R̂i. We note that by complementary slackness, νk > 0 only if Sk,i · (R∗

i − R̂i) ≥ 0 for all i = 1, . . . , n.

For, supposing without loss of generality that R∗
i > R̂i, if Sk,i ·(R∗

i −R̂i) < 0, then, since Sk+2ei ∈ {−1, 1}n,
we would have that

(Sk + 2ei)
⊤(R∗ − R̂) = ϵ · n+ 2(R∗

i − R̂i) > ϵ · n,

which violates the constraints. Hence Sk,i = Sk′,i for all k and k′ such that νk, νk′ > 0. Therefore, our
expression simplifies to

2 ·R∗
i − λ+ µ0,i − µ1,i +∆ · s = 0,

where s = ±1. By complementary slackness, if µ0,i > 0, then R∗
i = ui; if µ1,i > 0, then R∗

i = ℓi. Therefore,
we need only consider the case where µ0,i = µ1,i = 0, i.e., where

2 ·R∗
i − λ+ s ·∆ = 0,

whence R∗
i = 1

2 [λ+ s ·∆]. Therefore, for all i, (17) holds.

Strengthening conditions Next, we strengthen (17) to minimization normal form. First, we show that
if R∗

i0
> R̂i0 and R∗

i0
> R∗

i1
, then R∗

i1
= ui1 . For, suppose not. Then, there exists some δ > 0 such that (1)

R∗
i0
− δ > R̂i0 , (2) R

∗
i1
+ δ < ui1 , and (3) R∗

i0
− δ > R∗

i1
. Define R′ = R∗ + δ · (ei1 − ei0). Then, we note that

∥R′ − R̂∥1 − ∥R∗ − R̂∥1 =

n∑
i=1

|R′
i − R̂i| − |R∗

i − R̂i|

= |R′
i0 − R̂i0 | − |R∗

i0 − R̂i0 |+ |R′
i1 − R̂i1 | − |R∗

i1 − R̂i1 |
= (R∗

i0 − δ − R̂i0)− (R∗
i0 − R̂i0) + |R∗

i1 + δ − R̂i1 | − |R∗
i1 − R̂i1 |

≤ −δ + |R∗
i1 − R̂i1 |+ δ − |R∗

i1 − R̂i1 |
= 0,

so R′ satisfies the L1-distance constraint. Here, we have used the fact that both R∗
i0

and R∗
i0
− δ are greater

than R̂i0 in the third equality, and the triangle inequality in the inequality. The remaining constraints also
hold by construction, so R′ is feasible.

Since R′ is feasible, we will arrive at a contradiction if we can show that it achieves a greater objective.
However,

n∑
i=1

(R∗
i )

2 − (R′
i)

2 = (R∗
i0)

2 − ((R∗
i0)

2 + δ2 − 2 ·R∗
i0 · δ) + (R∗

i1)
2

− ((R∗
i1)

2 + δ2 + 2 · (R∗
i1) · δ) +

∑
i̸=i0,i1

(R∗
i )

2 − (R∗
i )

2

= 2 · δ · (R∗
i0 −R∗

i1 − δ)

> 0,
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where the inequality follows from the fact that R∗
i0
− δ > R∗

i1
. Therefore R∗ is not a minimum, contrary to

hypothesis. In exactly the same manner, we see that if R∗
i0

< R̂i and R∗
i1

< R∗
i0
, then R∗

i1
= ℓi1 .

Combining the claim—i.e., that if R∗
i0

> R̂i0 and R∗
i0

> R∗
i1
, then R∗

i1
= ui1—with (17) yields that for

all i, if R∗
i ≤ 1

2 · [λ−∆], then R∗
i = min(ui,

1
2 · [λ−∆]); if R∗

i ≥ 1
2 · [λ+∆], then R∗

i = max(ℓi,
1
2 · [λ+∆]);

and otherwise R∗
i = R̂i. Taking tlwr = 1

2 · [λ−∆] and tupr = 1
2 · [λ+∆] gives the result.

Uniqueness and budget exhaustion If the budget is not exhausted, then, by complementary slackness,
νk = 0 for all k = 1, . . . , 2k, whence ∆ = 0. This immediately implies that tlwr = tupr = 1

2λ.

To see uniqueness, suppose that R(0) and R(1) are two distinct minima, both in normal form, with

corresponding thresholds tlwr
k and tuprk for k = 0, 1. We note that since

∑n
i=1 R

(0)
i =

∑n
i=1 R

(1)
i = µ, we must

have, without loss of generality, that tlwr
0 ≤ tlwr

1 and tupr0 ≥ tupr1 , with at least one of the two inequalities strict.

However, it follows that ∥R(0) − R̂∥1 < ∥R(1) − R̂∥1, which is impossible by the preceding paragraph.

Lemma B.6 suggests a natural algorithm for solving the optimization problem in Eq. (9): we can sweep
over all possible risk vectors in minimization normal form simply by sweeping over tlwr. In particular, as we
increase tlwr, the sum constraint—i.e., that

∑n
i=1 Ri = µ—forces tupr to decrease so as to counterbalance it

exactly.
More precisely, consider an index i to be “active” if one of the thresholds is between ℓi and ui. If klwr

represents the number of indices that are active because of tlwr—and kupr is also defined accordingly—then,
locally, if we increase tlwr at unit rate, the sum of the risks increases at the rate of klwr. Therefore, the rates
of increase of the two thresholds, rlwr and rupr, must satisfy18

rlwr · klwr = rupr · kupr. (19)

In particular, we know that we have reached the minimum—and hence solved the optimization problem—
once either the budget has been exhausted or the two thresholds have become equal. For fixed rlwr and rupr,
this would be straightforward to calculate; however, these rates can, in principle, change whenever kupr and
klwr change. We call these change points “distinguished point”—that is, points at which a threshold t equals
ℓi, R̂i, or ui for some i. Therefore, the algorithm consists of repeating the following steps:

1. Determining the “next” distinguished points that either the lower or upper threshold will reach.

2. Checking whether the budget will be exhausted before that point is reached.

3. If not, advancing to that point and recalculating klwr or kupr as appropriate.

In addition, since
∑n

i=1 Ri may not equal µ, a “preprocessing” step, where tlwr is increased or tupr is decreased
may be needed to find the “initial” risk vector in minimization normal form satisfying the sum constraint.

We make two observations about the informal algorithm sketch given above needed for its extension
to the case of multiple strata. First, we note that every risk vector R∗ in minimization normal form
is the minimizer for the corresponding single stratum minimization problem with ϵ = 1

n∥R
∗ − R̂∥1 and

µ =
∑n

i=1 R
∗
i . Consequently, although intended to find the minimizer for a specific ϵ, the algorithm sketched

above actually sweeps over the minimizers for all possible ϵ. As a result, it is not any harder to solve a
single instance of the single stratum minimization problem than it is to solve it generally for all possible ϵ,
given some fixed µ. Secondly, while the natural way to parameterize the risk vectors in the discussion above
is in terms of tlwr, when optimizing over multiple strata, it is actually more natural to reparameterize the
risk vectors in terms of the gap ∆ = tupr − tlwr. If in addition to Eq. (19) we impose the condition that
rlwr + rupr = 1, so that ∆ decreases at a constant rate, then we have that19

rlwr =
kupr

klwr + kupr
, rupr =

klwr

klwr + kupr
. (20)

18If either klwr and kupr, then the corresponding threshold can be changed at any rate without affecting the sum constraint.
However, this is because changing that threshold in this case does not actually change the risk vector, since no indices are
active, and so we can ignore this case in the subsequent discussion.

19We note that by Lemma B.6, for every δ there is a unique Rδ, but that the reverse is not necessarily true, since there may
not be any i such that Ri = tlwr or tupr, in which case different thresholds can be chosen without altering the underlying risk
vector.
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To solve the single stratum minimization problem across the whole range of possible ϵ, let R∆ be the
unique solution we can associate with a given gap ∆ between tlwr and tupr.20 Then, we can study two
functions:

ϵ(∆) = ∥R∆ − R̂∥1, Σ(∆) =

n∑
i=1

R2
∆,i − R̂2

i .

By the preceding discussion we readily derive that ϵ(∆) is a piecewise linear function of ∆, whose slope at
a given value of ∆ is equal to21

K = 2 · k
lwr · kupr

klwr + kupr
,

and Σ(∆) is a piecewise quadratic function of ∆ satisfying

Σ(∆ + t) = Σ(∆) + klwr · [(tlwr + rlwr · t)2 − (tlwr)2] + kupr · [(tupr − rupr · t)2 − (tlwr)2]

= Σ(∆) + klwr · rlwr · t · (rlwr · t+ 2tlwr) + kupr · rupr · t · (rupr · t− 2tupr)

= Σ(∆)− 2 · k
lwr · kupr

klwr + kupr
· (tupr − tlwr) · t+ klwr(kupr)2 + kupr(klwr)2

(klwr + kupr)2
· t2

= Σ(∆)−K∆t+
K

2
t2,

as long as t is sufficiently small that the number of active indices does not change. It follows that ϵ(∆) and
Σ(∆) are fully determined by the following collections:

∆ = (∆1, . . . ,∆N ), 1 = ∆1 < · · · < ∆N = 0,

where ∆k represents the k-th value of ∆ at which klwr and kupr change; and

K = (K1, . . . ,KN ), K1 = 0, KN = 0,

where Kk denotes the value of K beginning at ∆ = ∆k. From ∆ and K, the ∆∗ such that ∥R∆∗ − R̂∥1 = ϵ
can be calculated in linear time. For completeness, this algorithm is given in Algorithm 2.

Thus, a complete solution for the optimization problem for a single stratum across all possible ϵ requires
only calculating ∆ and K. As described above, this can be calculated by moving the thresholds toward each
other at the prescribed rates rlwr and rupr, updating the rates each time an index is activated or deactivated,
until the gap between the thresholds is zero. Similar to evaluating ϵ(∆) and Σ(∆), this can be completed in
linear time, as described in Algorithm 4. (As above, we note that if 1

n

∑n
i=1 R̂i ̸= µ, it may be necessary to

do a preprocessing step, also in linear time, as shown in Algorithm 3.)

B.2.2 Optimizing over all strata

With a complete solution to the problem of minimizing the sum of squares for a single stratum, the problem
of minimizing the sum of squares across all strata is straightforward. We begin by characterizing solutions
to the minimization problem in the general case.

Lemma B.7. Consider the simplified minimization problem in Eq. (9). Suppose that R∗ is a solution.
Then, the restriction of R∗ to any stratum is in minimization normal form. Moreover, R∗ exhausts the L1

budget, in that either 1
n∥R − R̂∥1 = ϵ or tlwr = tupr = µa,j, where µa,j equals either ρj or τj depending on

whether a equals 1 or 0.

Proof. The proof is virtually identical to the proof of Lemma B.6. The only difference is that the first-order
necessary KKT conditions take the form

2 ·R∗ −

 m∑
j=1

λ0,j · 10,j + λ1,j · 11,j

+

n∑
i=1

µ0,i · ei −
n∑

i=1

µ1,i · ei +
2n∑
k=1

νk · Sk = 0, (21)

20For every ∆ there is a unique R∆. In particular, any other distinct risk vector in minimization normal form with the same
gap must be strictly greater or lesser, as argued at the end of Lemma B.6, meaning that it cannot satisfy the sum constraint.
However, the reverse is not necessarily true—that is, R∆ may equal R∆′ for ∆ ̸= ∆′—since achieving a given gap may require
that klwr = kupr = 0, in which case different thresholds can be chosen without altering the underlying risk vector.

21Or zero if both klwr and kupr are zero.
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where 1a,j =
∑

Ci=cj ,Ai=a ei. Restricting to a single i gives the following minor variant of Eq. (18):

2 ·R∗
i − λa,j + µ0,i − µ1,i +

n∑
k=1

νk · Sk,i = 0.

The proof then proceeds identically; the only difference is to note that while λa,j varies by stratum, ∆ =∑2n

k=1 νk does not.

It follows that solving the minimization problem across all strata can be carried out in almost the same
way as across a single stratum:

1. Construct piecewise linear functions ϵa,j(∆) and piecewise quadratic functions Σa,j(∆) for each stra-
tum;

2. Note that because the sums
∑1

a=0

∑m
j=1 ϵa,j(∆) and

∑1
a=0

∑m
j=1 Σa,j(∆) are also piecewise linear and

quadratic, respectively, they can also be evaluated using Algorithm 2;

3. Find ∆∗ such that
∑1

a=0

∑m
j=1 ϵa,j(∆

∗) = ϵ, and evaluate
∑1

a=0

∑m
j=1 Σa,j(∆

∗).

Consequently, beyond the machinery established in Algorithms 2, 3, and 4, we only need a way of calculating
the sums of these piecewise functions. This can be carried out straightforwardly using a variation on the
standard merge-sort algorithm, which we give in Algorithm 5 for completeness.

Putting this all together, we obtain the following lemma summarizing the results of this section.

Lemma B.8. If ℓ, R̂, and u have been sorted, then there exists an O(log(m) · n) algorithm solving the
simplified minimization problem (Eq. (9)).

Proof. The proof is straightforward. We begin by noting that Algorithm 2 requires linear time: the index i
increases by one in the while loop on lines 6 through 10 on each iteration, and must be less than the length
of the input. Similarly, in Algorithm 3, the while loop on lines 11 through 22 increments ilwr by one on
each loop, and limits it to three times the length of the input. The same analysis applies to Algorithm 4,
in which either iupr or ilwr increases by one on each iteration. We note that the run time of Algorithm 5 is
proportional to the sum of the lengths of its inputs. Using a standard divide-and-conquer approach, we can
accomplish the combination of the 2m strata in m total calls, where each element of the input appears in
1 + ⌈log2(m)⌉ of the function calls, for a total time complexity of O(log(m) · n). Putting this all together,
the total complexity is O(log(m) · n).

B.3 Maximization

Even in the simplified problem in Eq. (9), maximization is not a convex problem. In general, maximizing a
quadratic objective over a linearly constrained convex set is NP-hard (Sahni, 1974). However, the restricted
forms of the objective and constraints allow us efficiently to solve the optimization problem exactly in the
case of a single stratum and approximately in the case of multiple strata.

B.3.1 Optimizing over a single stratum

As in the case of minimization, risk vectors that maximize the single-stratum maximization problem have a
special normal form.

Definition B.9 (Maximization normal form). We say that a risk vector R is in maximization normal form if
there exist indices (“pivots”) ilwr and iupr such that

Ri =


ℓi i < ilwr,

R̂i ilwr < i < iupr,

ui iupr < i.
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R = 0

R = 1

ilwr iupr

Figure 5: Maximization normal form. Black dots represent estimated risks R̂i, the error bars represent the
allowable range [ℓi, ui], and red dots indicate the corresponding value of the normal form vector Ri. The
pivots are indicated on the x-axis.

We additionally require that the risk values at the pivots themselves satisfy Rilwr ∈ [ℓilwr , R̂ilwr ] and Riupr ∈
[R̂iupr , uiupr ].22,23

Maximization normal form is similar to minimization normal form, except that instead of begin pushed
toward the thresholds, values at indices below the lower pivot are pushed down, and values at indices above
the upper pivot are pushed up. An illustration of maximum normal form is given in Figure 5.

An important difference from the case of minimization is that studying the KKT conditions does not
yield the normal form directly; instead, it yields a weaker characterization.

Definition B.10 (Weak normal form). We say that a risk vector is in weak normal form if there exist
thresholds tlwr and tupr such that

Ri =



ℓi Ri < tlwr,

tlwr Ri = tlwr,

R̂i tlwr < Ri < tupr,

tupr Ri = tupr,

ui tupr < Ri,

and there exists at most one lower index ilwr such that Rilwr = tlwr; and similarly, there exists at most one
upper index iupr such that Riupr = tupr

We note that, in the case of weak maximization normal form, the indices ilwr and iupr are analogous to
the pivots in maximization normal form; however, they do not share the key property, which is that all of
the indices i < ilwr index risks that have been pushed down all the way to ℓi and all of the indices i > iupr

index risks that have been pushed all the way up to ui; see Figure 6.

Lemma B.11. Consider the single-stratum maximization problem—i.e., maximization in Eq. (15). Suppose

that R∗ is a solution. Then, R∗ is in weak normal form. Moreover, either 1
n∥R

∗ − R̂∥1 = ϵ or R∗
i equals ℓi

or ui for all but (at most) one i.

Proof. The proof is quite similar to the proof of Lemma B.6. We note that the first-order KKT conditions

22Since it involves the ordering of the indices as well as the risk values, the appropriate generalization of maximization normal
form is notationally awkward to express when multiple strata are involved. Fortunately, in contrast to the case of minimization,
we will not have occasion to use such a generalization, and so do not give its definition.

23We note that we allow ilwr and iupr to take the values 0 or n+1 in addition to {1, . . . , n} to cover cases where, e.g., Ri = ℓi
for all i = 1, . . . , n.
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R = 0

R = 1

tlwr

tupr

ilwr iupr

Figure 6: Weak maximization normal form. Black, blue, and grey dots represent estimated risks R̂i, the
error bars represent the allowable range [ℓi, ui], and red dots indicate the corresponding value of the normal
form vector Ri. The pivots are indicated on the x-axis. The risk Ri at indices where the estimated risk is
between the thresholds and the bounds straddle the thresholds (shown in blue) can take on a number of values
(e.g., Ri = R̂i or Ri = ui). Likewise, ilwr and iupr can occur at any index i such that Ri = tlwr or Ri = tupr

is feasible (shown in grey). As a result, the set of risk vectors in weak maximization normal form is a very
complex search space.

are almost the same, namely that

2 ·R∗ − λ · 1−
n∑

i=1

µ0,i · ei +
n∑

i=1

µ1,i · ei −
2n∑
k=1

νk · Sk = 0 (22)

for some λ and µ0,i, µ1,i, νk ≥ 0 satisfying complementary slackness. Virtually exactly as before, it follows
from this that Eq. (17) holds, i.e., that

R∗
i ∈

{
R̂i, ui, ℓi,

1

2
· [λ−∆],

1

2
· [λ+∆]

}
. (23)

Again, as in the case of minimization, we can strengthen Eq. (23). In particular, exactly the same argument
used to strengthen the weak conditions in Lemma B.6 yields that if R∗

i0
> R̂i0 and R∗

i0
< R∗

i1
, then R∗

i1
= ui1 ;

and, conversely, if R∗
i0

< R̂i0 and R∗
i0

> R∗
i1
, then R∗

i1
= ℓi1 . The proof is then otherwise the same as in

Lemma B.6.
To see that there can be at most one i such that such that ℓi < R∗

i < R̂i, suppose that ℓi0 < R∗
i0

< R̂i0

and ℓi1 < R∗
i1

< R̂i1 for i0 ̸= i1. By Eq. (23), R∗
i0

= R∗
i1
. Choose δ > 0 sufficiently small that R∗

i0
− δ > ℓi0

and R∗
i1
+ δ < R̂i1 . Then, as in the case of minimization, it follows immediately that R∗ + δ(ei1 − ei0) is

feasible, but increases the objective by 2δ2, contrary to the hypothesis that R∗ was a maximizer. In the
same way, it follows that there exists at most one i such that ui > R∗

i > R̂i.
Combining this with our previous necessary condition on R∗ and letting tlwr = 1

2 · [λ − ∆] and tupr =
1
2 · [λ + ∆] yields that for all i such that R∗

i < tlwr, R∗
i = ℓi; that for all i such that R∗

i > tupr, R∗
i = ui;

that there is at most one index such that R̂i > R∗
i > tlwr; and, finally, that there is at most one i′ such that

R̂i′ < R∗
i′ < tupr.

Lemma B.11 is, by itself, insufficient to form the basis of an effective solution algorithm since it does not
determine which indices are ilwr and iupr. Even if these indices were known, they do not pin down the value
of Ri for i ̸= ilwr, iupr, which could, almost without restriction, be ℓi, R̂i, or ui. As a result, the search space
of vectors in weak maximization normal form is extremely large.

Therefore, to construct an effective maximization algorithm, we must transform vectors merely in weak
maximization normal form into vectors that are in full-fledged maximization normal form.
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To do so, we will have need of the following elementary fact.

Lemma B.12. Suppose a ≥ b and c ≥ d. Then

|a− c|+ |b− d| ≤ |a− d|+ |b− c|.

Proof. The proof is not complicated, but is simplest to understand if expressed in geometric terms. Consider
the points p0 = (a, b) and p1 = (c, d). Then both p0 and p1 lie in the lower half-plane

H = { (x, y) : x ≥ y}.

Let T : (x, y) 7→ (y, x) be the linear transformation given by reflection across the line y = x. Then, the claim
of the lemma can be reframed as follows: for any p0,p1 ∈ H,

∥p0 − p1∥1 ≤ ∥p0 − T (p1)∥1. (24)

This setup is shown in Figure 7a. We divide into four cases according to whether a ≥ c and b ≥ d, or,
equivalently, depending on in which of the four regions shown in Figure 7b the point p1 lies.

Case (A): a ≥ c and b ≥ d In this case, we have that

|a− c|+ |b− d| = a− c+ b− d

= a− d+ b− c

≤ |(a− d) + (b− c)|
≤ |a− d|+ |b− c|.

Therefore, Eq. (24) holds.

Case (B): a ≤ c and b ≥ d In this case,

|a− c|+ |b− d| = c− a+ b− d

≤ c− a+ b− d+ 2(a− b)

= c− b+ a− d

≤ |(c− b) + (a− d)|
≤ |c− b|+ |a− d|,

so Eq. (24) holds in this case as well.
Before completing the proof, we note that T has the useful property that

∥T (p)∥1 = ∥p∥1. (25)

Case (C): a ≤ c and b ≤ d We note that this case is the same as Case (A) with the roles of p0 and p1

reversed. Consequently, by Eq. (24), we have that

∥p0 − p1∥1 ≤ ∥T (p0)− p1∥1.

Applying Eq. (25) and using the fact that T 2 is the identity, we have that

∥T (p0)− p1∥1 = ∥T (T (p0)− p1)∥1 = ∥p0 − T (p1)∥1,

which yields Eq. (24).
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p0
p1

T

(a) Setup

p0

(A) (B)

(C)(D)

(b) Division into cases

Figure 7: An illustration of the proof of Lemma B.12. The half-plane H is shown in gray, with the dotted
lines representing the coordinate axes. Left: The claim of the lemma is equivalent to the claim that the
path joining p0 to p1 is no longer than the path joining p0 to T (p1). Right: The division into four cases,
depending on where p0 lies relative to p1.

Case (D): a ≥ c and b ≤ d We argue as in the previous case, noting that this case is equivalent to
Case (B) with the roles of p0 and p1 reversed, whence

∥p0 − p1∥1 ≤ ∥T (p0)− p1∥1 = ∥p0 − T (p1)∥1.

A further difference from minimization is that the additional assumption of sortability, Definition 4.1,
is required to connect maximizers to maximization normal form. If sortability fails, there may be intervals
[ℓi, ui] that can be non-trivially nested for distinct i, which can cause i0 and i1 to “jump between” different
indices a potentially exponential number of times in the search for a maximizer. For notational convenience,
we assume throughout that sortable risk vectors are, in fact, already sorted.

The first step to deriving an effective maximization algorithm is to remove “trivial” deviations from
maximization normal form.

Definition B.13 (Trivial deviations from normality). We say that a risk vector in weak normal form has a
trivial deviation from normality relative to its bounds if there are i0 < i1 such that ℓi0 = ℓi1 , ℓi0 < Ri0 , and
Ri1 = ℓi1 ; or there are i′1 > i′0 such that ui′0

= ui′1
, Ri′1

< ui′1
, and Ri′0

= ui′0
.

We say that a risk vector in weak normal form has a trivial deviation from normality relative to its
estimates if there are i0 < i1 such that R̂i0 = R̂i1 but Ri0 > Ri1 .

An illustration of trivial deviations from normality is shown in Figure 8. As their name suggests, trivial
deviations from normality are straightforward to eliminate.

Lemma B.14. Suppose the constraints are sortable. If a feasible risk vector R is in weak normal form
with trivial deviations from normality, then there exists a feasible R′ in weak normal form with no trivial
deviations from normality such that

1

n

n∑
i=1

R2
i =

1

n

n∑
i=1

(R′
i)

2.

Proof. We first define an algorithm for removing trivial deviations from normality, and then show that it
must eventually terminate when all trivial deviations have been removed.
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i0 i1 i′0 i′1 i†0 i†1

Figure 8: An illustration of trivial deviations from normality. As in Figures 1 and 5, the black dots rep-
resent estimated risks R̂i, the error bars represent the allowable range [ℓi, ui], and the red dots represent
the corresponding values of Ri, with indices increasing from left to right on the x-axis. There is a trivial
deviation from normality relative to the lower bound on the left because ℓi0 = ℓi1 but Ri1 = ℓi1 , and a similar
illustration of a trivial deviation from normality relative to the upper bound in the center. On the right there
is a trivial deviation from the estimates.

Algorithm If there were any indices i0 and i1 representing a trivial deviation from normality, then we
could eliminate them by swapping Ri0 and Ri1 , i.e., by considering

R′
i = Ri (i ̸= i0, i1), R′

i0 = Ri1 , R′
i1 = Ri0 .

In particular, it follows immediately that R′ is still in weak normal form and that 1
n

∑n
i=1 R

2
i = 1

n

∑n
i=1(R

′
i)

2.

Because R is sorted, the only feasibility constraint on R′ that is not satisfied trivially is that ∥R′− R̂∥1 ≤ ϵ.
However, this constraint follows by applying Lemma B.12 with a = Ri0 , b = Ri1 , c = R̂i1 , and d = R̂i0 , which
yields

∥R′ − R̂∥1 ≤ ∥R− R̂∥1 ≤ ϵ.

Termination We call a pair of indices (i0, i1) out of order if i0 < i1, but Ri0 > Ri1 . We note that any
trivial deviation from normality requires that the corresponding indices i0 and i1 are out of order. Then, we
observe the following facts:

Fact 1. There are only finitely many pairs of out-of-order indices.

Fact 2. As long as there is a trivial deviation of any kind, it is possible to swap indices so as to
remove that trivial deviation.

Fact 3. Any swap undertaken as part of the algorithm strictly reduces the number of out-of-order
pairs of indices.

We note that it follows immediately from these three facts that a greedy algorithm removing trivial deviations
in any order whatsoever must eventually terminate.

Fact 1 is immediate, and Fact 2 follows from the discussion of the algorithm above. To see that Fact 3
holds, it suffices to show that any swap of out-of-order pairs of indices strictly reduces the number of out-
of-order pairs of indices.

To this end, suppose i0 < i1 are out of order. As before, we use R′ to denote the risk vector after
swapping indices i0 and i1. First, suppose there is an index i∗ such that i0 < i∗ < i1. Then, if (i0, i

∗) is out
of order after swapping i0 and i1, it must have been out of order before swapping, since

Ri0 > Ri1 = R′
i0 > R′

i∗ = Ri∗ .
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Likewise, if (i∗, i1) is out of order after swapping i0 and i1, it too must have been out of order before
swapping, since

Ri∗ = R′
i∗ > R′

i1 = Ri0 > Ri1 .

Therefore, swapping cannot increase the number of out-of-order pairs involving i0 < i∗ < i1.
On the other hand, since R′

i0
< R′

i1
, if i∗ < i0, then there are three possibilities:

Case 1. After swapping, neither (i∗, i0) nor (i
∗, i1) is out of order.

Case 2. After swapping, both (i∗, i0) and (i∗, i1) are out of order.

Case 3. After swapping, (i∗, i0) is out of order, but (i
∗, i1) is not.

In the first case, the number of out-of-order pairs cannot have increased, so we only need to consider the
second and third cases. In Case 2, we must have that

Ri∗ = R′
i∗ > R′

i1 = Ri0 > Ri1 ,

so both (i∗, i0) and (i∗, i1) were out of order before swapping. In Case 3, we must have that

Ri0 = R′
i1 ≥ R′

i∗ = Ri∗ > R′
i0 = Ri1 ,

so that before swapping (i∗, i1) was out of order, but (i∗, i0) was not. Therefore, it follows that swapping
again cannot increase the number of out-of-order pairs involving i∗ < i0. A similar argument shows that the
number of out-of-order pairs involving i1 < i∗ does not increase after swapping. Therefore swapping strictly
reduces the number of out-of-order pairs, since it at least eliminates the pair (i0, i1), which is Fact 3.

With these preliminaries in hand, we are prepared to solve the maximization problem.

Lemma B.15. Suppose the constraints are sortable. Then the single stratum maximization problem in
Eq. (15) is maximized by a risk vector in maximization normal form and that either exhausts the budget or
has ilwr = iupr.

Proof. We adopt a strategy similar to that used in the “strengthening” portion of the proof of Lemma B.6.
Namely, we show that any point satisfying the necessary conditions of Lemma B.11 but without pivots can
be “improved” to a feasible point that achieves a greater objective.

Let R∗ be a maximizer. By Lemma B.11, R∗ is in weak maximization normal form; by Lemma B.14, we
may assume that R∗ has no trivial deviations from normality.

To prove the theorem, we first observe that it suffices to prove the following two claims:

1. There do not exist i0 < i1 such that R∗
i0

> ℓi0 and R∗
i1

< R̂i1 ,

2. There do not exist i0 < i1 such that R∗
i1

< ui1 and R∗
i0

> R̂i0 .

First, we see how the theorem follows from the two claims. Define ilwr and iupr as follows:

ilwr = min{ i : R∗
i > ℓi }, iupr = max{ i : R∗

i < ui },

then, for all i < ilwr, R∗
i = ℓi, and for all i > iupr, R∗

i = ui. Moreover, for all i satisfying ilwr < i < iupr,

by Claim 1, R∗
i ≥ R̂i; and, by Claim 2, R∗

i ≤ R̂i. Consequently, R∗
i = R̂i for these indices. Moreover, if

ilwr ̸= iupr, by Claim 2, R∗
ilwr ≤ R̂ilwr , i.e., R∗

ilwr ∈ [ℓilwr , R̂ilwr ]. Similarly, by Claim 1, we conclude that

R∗
iupr ∈ [R̂iupr , uiupr ].
Therefore it suffices to prove the two claims. Since the proofs are virtually identical, we focus on Claim 1.
The key observation is the following. Suppose there exist indices R∗

i0
and R∗

i1
with R∗

i1
≥ R∗

i0
, and

suppose that there is some δ such that after decreasing R∗
i0

and increasing R∗
i1

by δ the result is still feasible.
Then R∗ cannot be maximal, since, letting R′ = R∗ + δ(ei1 − ei0), we have that[

n∑
i=1

(R′
i)

2

]
−

[
n∑

i=1

(R∗
i )

2

]
= (R∗

i0 − δ)2 + (R∗
i1 + δ)2 − (R∗

i0)
2 − (R∗

i1)
2

= 2δ(δ + [R∗
i1 −R∗

i0 ])

≥ 2δ2

> 0.

(26)
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To actually prove the claim, we proceed by contradiction. In particular, suppose that i0 < i1 represented
an exception to Claim 1, so that R∗

i0
> ℓi0 and R∗

i1
< R̂i1 .

If R∗
i0
≤ R∗

i1
, then Eq. (26) immediately applies, since increasing R∗

i1
decreases the L1 distance between

R̂ and R∗ and decreasing R∗
i0
, at worst, increases it at the same rate. More formally, for 0 < δ sufficiently

small,

|(R∗
i0 − δ)− R̂i0 |+ |(R∗

i1 + δ)− R̂i1 | = |(R∗
i0 − δ)− R̂i0 |+ R̂i1 − (R∗

i1 + δ)

≤ |R∗
i0 − R̂i0 |+ δ + R̂i1 −R∗

i1 − δ

= |R∗
i0 − R̂i0 |+ |R∗

i1 − R̂i1 |,

and so R′ is feasible. Because R∗
i0
≤ R∗

i1
, by Eq. (26), R′ achieves a greater average sum of squares that R∗,

contrary to the assumed maximality of R∗.
On the other hand, if R∗

i0
> R∗

i1
, then, by Lemma B.12, the vector R† given by switching the indices i0

and i1, i.e.,
R†

i = R∗
i (i ̸= i0, i1), R†

i0
= R∗

i1 , R†
i1

= R∗
i0 ,

satisfies ∥R† − R̂∥1 ≤ ϵ. Moreover, applying our sortability hypothesis, we have that

ui0 ≥ R∗
i0 > R∗

i1 ≥ ℓi1 ≥ ℓi0 ,

and
ui1 ≥ ui0 ≥ R∗

i0 > R∗
i1 ≥ ℓi1 ,

we have that for all i = 1, . . . , n, ℓi ≤ R†
i ≤ ui. Therefore R† is feasible. However, since R∗ has no trivial

deviations from normality, it follows that

R†
i0

= R∗
i1 ≥ ℓi1 > ℓi0 , R†

i1
= R∗

i0 ≤ ui0 < ui1 .

Since R†
i0

< R†
i1
, we would like to apply Eq. (26) to derive a contradiction. To that end, we require that

R† + δ(ei1 − ei0) is feasible for sufficiently small δ > 0. If it were the case that

∥R† + δ(ei1 − ei0)∥1 ≤ ∥R†∥1, (27)

then the result follows immediately. However, Eq. (27) holds except when R†
i0
≤ R̂i0 and R†

i1
≥ R̂i1 ; or,

equivalently, R∗
i1
≤ R̂i0 and R∗

i0
≥ R̂i1—see Figure 9. However, in this case, we have by sortability that

|R∗
i0 − R̂i0 |+ |R∗

i1 − R̂i1 | = R∗
i0 − R̂i0 + R̂i1 −R∗

i1

> (R∗
i0 − R̂i0 + R̂i1 −R∗

i1) + 2(R̂i0 − R̂i1)

= R∗
i0 − R̂i1 + R̂i0 −R∗

i1

= |R†
i0
− R̂i0 |+ |R

†
i1
− R̂i1 |,

where we have used the fact that, because there are no trivial deviations from normality relative to the
estimates, R̂i1 > R̂i0 . Therefore ∥R†∥1 < ϵ and so we can choose δ sufficiently small that ∥R† + δ(ei1 −
ei0)∥1 ≤ ϵ, completing the proof.

Therefore, no such i0 < i1 exist, and so R∗ is in maximization normal form.

Lemma B.15 allows us to efficiently search over the space of risk vectors to find the maximizer. In
particular, all that is necessary is to decrease the risk at the lower pivot and increase it at the upper pivot
until the L1 budget is expended. The linear-time algorithm for doing so is given in Algorithm 7. (As in
the case of Algorithm 4, there is a potential preprocessing step, given in Algorithm 6.) As we did in the
minimization algorithm, we capture the maximization algorithm’s value at a variety of L1 budgets, controlled
by some step-size γ—which, we assume, satisfies kγ = ϵ for some k ∈ N—rather than just the full budget ϵ.
We denote this collection with Σ. The reason for doing this is to allow us to maximize across strata.
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i0 i1 i0 i1 i0 i1 i0 i1

Case 1 Case 2 Case 3 Case 4

Figure 9: This diagram shows various possibilities of the relative ordering of R∗
i0
, R∗

i1
, R̂i0 , and R̂i1 in

the final section of the proof of Lemma B.15. Here, the upper and lower bounds are shown by the error
bars, the original estimates (R̂) are shown in black, the starting risk vector (R∗) as red dots, the risk
vector after indices i0 and i1 have been exchanged (R†) as blue dots, and the vector with increased objective
(R† + δ(ei1 − ei0)) as green dots. Here we see that in Case 1, where R̂i1 ≥ R∗

i0
≥ R∗

i1
≥ R̂i0 , perturbing

R† by δ(ei1 − ei0) actually decreases the L1 distance to R̂; the L1 distance between R̂ and R† is shown

with the heavy blue lines, and between R̂ and R† + δ(ei1 − ei0) by the heavy green lines. In Case 2, where

R∗
i0
≥ R̂i1 ≥ R∗

i1
≥ R̂i0 , we see that perturbing R† by δ(ei1 − ei0) increases the absolute distance from R̂

at i1, but this increase is exactly compensated by a decrease at i0. The situation is identical in Case 3,
where R̂i1 ≥ R∗

i0
≥ R̂i0 ≥ R∗

i1
, except with the roles of i0 and i1 reversed. Finally, in Case 4, which is

treated separately, we see that the initial transformation from R∗ to R† strictly reduces the L1 distance to
R̂ when we compare R∗ (heavy red lines) to R† (heavy blue lines), so that the L1 distance between R̂ and
the perturbed risk vector (heavy green lines) is still less than the constraint.
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B.3.2 Optimizing over all strata

Consider the simplified maximization problem in Eq. (9). Since the objective is separable, the problem
would be separable in the different strata, except that the L1 budget constraint ranges over all of the
strata simultaneously. Much as we reduced the base problem to the parameterized problem by introducing
additional parameters τj , j = 1, . . . ,m, if the optimal budget allocation to each stratum were known, then
we could reduce to the single stratum case, applying Algorithm 7. In particular, we note that the following
optimization problem (hereafter “the separable problem”) parameterized by the stratum-specific budgets
ϵ1,0, . . . , ϵm,0, ϵ1,1, . . . , ϵm,1 is separable:

Optimize
R∈Rn

1

n

n∑
i=1

R2
i

s.t. 1
|Sj,1|

∑n
i∈Sj,a

|Ri − R̂i| ≤ ϵj,a, (a = 0, 1; j = 1, . . . ,m)∑
i∈Sj,1

Ri = ρj , (j = 1, . . . ,m)∑
i∈Sj,0

Ri = τj , (j = 1, . . . ,m)

Ri ≤ ui, (i = 1, . . . , n)
Ri ≥ ℓi. (i = 1, . . . , n)

(28)

In particular, the separable problem can be solved stratum by stratum, since the constraints and objective
are both separable at the stratum level.

Reducing solving the simplified problem to solving the separable problem, however, is complex; There is no
obvious way to determine the optimal L1 budget allocation other than by sweeping over all possible budgets.
However, it is nevertheless possible to efficiently discover an approximately optimal budget allocation using
a divide-and-conquer approach. In particular, as shown in Algorithm 7, it is only marginally more difficult
computationally to output the maximum value of the objective for the entire budget than to output the
maximum value of the objective for a range of budgets, i.e., to output Σ, which gives the maximum value
of the objective for the budgets 0, γ, 2γ, . . . , ϵ.

Given Σ(0) and Σ(1) corresponding to two different strata when the allocated budget is 0, γ, 2γ, . . . , ϵ,
we can find the approximate maximum value of the objective when the total budget allocated to both strata
is 0, γ, 2γ, . . . , ϵ by sweeping over the two dimensional grid of points {0, γ, . . . , ϵ} × {0, γ, . . . , ϵ}, and, for
kγ, outputting

max
(
Σ

(0)
0 +Σ

(1)
k+1,Σ

(0)
1 +Σ

(1)
k , . . . ,Σ

(0)
k+1 +Σ

(1)
0

)
.

For completeness, we explicitly give this maximization routine in Algorithm 8.

Lemma B.16. If ℓ, R̂ and u have been sorted, then the approximate solution to the maximization problem
in Eq. (9) given by applying Algorithms 7 and 8 is

O

(
m ·

(
ϵ

γ

)2

+ n

)
.

We note that δ, as used in Section 4 above, equals 2mγ.

Proof. We begin by analyzing Algorithm 6. We note that the number of iterations of the while loop on
lines 7 through 12 is capped by the length of the input, since iupr is decremented on each input. Likewise,
Algorithm 7 is almost linear in the size of the input: in the while loop on lines 14 though 30, either ilwr is
incremented, or the subsequent multiple of γ is reached, meaning that the algorithm as a whole is linear in
the size of the input and ϵ/γ. Therefore, running Algorithm 4 over all 2m strata requires O(n+ mϵ

γ ) time.
All of the strata can be combined using 2m− 1 applications of Algorithm 5. Reviewing the for loop on

lines 3 through 11 and the while loop on lines 5 through 8, we see that exactly

ϵ
γ · (

ϵ
γ + 1)

2

iterations are performed. Adding this to the previous runtime obtained and simplifying gives the desired
expression.
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B.4 Controlling approximation error

There are two sources of approximation error in our algorithm. The first is the approximation error in-
troduced by solving the maximization problem only approximately. The second is the approximation error
introduced by the fact that we cannot sweep over all possible values of τ = (τ1, . . . , τm) when solving the
simplified problem; instead, we must sweep over a grid where. Characterizing how much error is introduced
by each of these approximations is our final task.

We begin with the following simple lemma.

Lemma B.17. Suppose R(0) and R(1) are risk vectors. Then∣∣∣∣∣
n∑

i=1

(R
(1)
i )2 −

n∑
i=1

(R
(0)
i )2

∣∣∣∣∣ ≤ 2 · ∥R(1) −R(2)∥. (29)

Proof. The claim, which is a version of Hölder’s inequality, follows straightforwardly from considering the
following difference: ∣∣∣∣∣

n∑
i=1

(R
(1)
i )2 − (R

(0)
i )2

∣∣∣∣∣ ≤
n∑

i=1

|(R(1)
i )2 − (R

(0)
i )2|

≤
n∑

i=1

(R
(1)
i +R

(0)
i ) · |R(1)

i −R
(0)
i |

≤
n∑

i=1

2 · |R(1)
i −R

(0)
i |

= 2 · ∥R(1) −R(0)∥1.

The first inequality follows from the triangle inequality, and the second and third from the fact that 0 ≤
R

(0)
i , R

(1)
i ≤ 1.

Using Lemma B.17, we obtain the following characterization of the potential error in our maximization
algorithm, again recalling that δ = 2mγ, where δ is as in Section 4.

Lemma B.18. The difference between the true maximum of the simplified problem—i.e., Eq. (9)—and the
quantity obtained from applying Algorithms 4 and 5 is at most 2mγ.

Proof. Let R∗ be the true maximizing solution. We will show that Algorithm 8 computes the value of the
objective at a “close” point at which we can apply Lemma B.17.

For each stratum Sj,a, let ϵj,a denote

1

n

∑
i∈Sj,a

|R∗
i − R̂i|.

Then, there exist ϵ̃j,a ∈ {0, γ, 2γ, . . . , ϵ} such that ϵ̃j,a < ϵj,a and ϵj,a − ϵ̃j,a is less than γ.
Let

∆ =

1∑
a=0

m∑
j=1

ϵj,a − ϵ̃j,a = ϵ− kγ

for some k. Since ϵ is a multiple of γ, it follows that ∆ = k′γ for some k ∈ N, where k′ < 2m, the number
of strata.

Set ϵ′j,a = ϵ̃j,a except for k′ arbitrarily chosen strata, where we set ϵ′j,a = ϵ̃j,a + γ instead. Then, there
exists R that is in (maximization) normal form such that

1

n

n∑
i=1

|Ri − R̂i| = ϵ,
1

n

∑
Ai=a
Ci=cj

|Ri − R̂i| = ϵ′j,a.
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The remainder of the proof follows simply by comparing R and R∗ stratum by stratum. In particular,
consider the restrictions of R and R∗ to a single stratum Sj,a. By Eq. (9), we have that∑

i∈Sj,a

Ri =
∑

i∈Sj,a

R∗
i ,

and, moreover, by Lemma B.15, both Rj,a and R∗
j,a can be assumed to be in maximization normal form.

Assume, without loss of generality, that ϵ′j,a ≤ ϵj,a. (The proof is virtually identical if the inequality is
reversed.)

Let i0 and i1 denote the pivots of R, and i∗0 and i∗1 of R∗, so that i0 ≤ i∗0 ≤ i∗1 ≤ i1. (To avoid unnecessary
notational complication, we write as if all n individuals belong to the stratum Sj,a and the constraints were
sorted.) Then, we note that

Ri ≥ R∗
i (i0 ≤ i ≤ i∗0), Ri ≤ R∗

i (i∗1 ≤ i ≤ i1), Ri = R∗
i (otherwise). (30)

It follows that
n∑

i=1

(R∗
i )

2 −R2
i =

 i1∑
i=i∗1

(R∗
i )

2 −R2
i

−
 i∗0∑
i=i0

R2
i − (R∗

i )
2

 . (31)

Both terms in Eq. (31) are positive by Eq. (30). Moreover, by Lemma B.17, both terms are less than or
equal to

2 ·

 i∗1∑
i=i1

R∗
i −Ri

 = 2 ·

 i∗0∑
i=i0

Ri −R∗
i

 = 2n ·
ϵa,j − ϵ′a,j

2
≤ nγ.

In particular, their difference must also be less than this quantity, and so, summing across strata, we have
that

n∑
i=1

(R∗
i )

2 −R2
i ≤ 2nmγ.

Dividing through by n gives the result.

The second element we need is a bound on the sensitivity of the objective of the simplified problem to
changes in the parameters.

Lemma B.19. Let R(0) and R(1) be solutions to the simplified problem in Eq. (9) with parameters

τ (0) = (τ
(0)
1 , . . . , τ (0)m ), τ (1) = (τ

(1)
1 , . . . , τ (1)m ),

respectively. Then the difference between the objective values of the two solutions is at most 4 · ∥τ (0)−τ (1)∥1.
Proof. The strategy is simple: we will transform R(0) into a feasible solution of the simplified problem with
parameters τ (1) and vice versa for R(1) and τ (0). These new solutions lower or upper bound—depending
on whether we are considering minimization or maximization—the objective of the new problem; however,
by Lemma B.17, we can also bound their difference in objective value from the original solutions, giving a
bound on the difference in objective value of the original solutions.

In particular, we see that the lemma immediately follows from Lemma B.17 and if there exist R(2) and
R(3) such that

∥R(0) −R(2)∥1, ∥R(1) −R(3)∥1 ≤ 2 · ∥τ (0) − τ (1)∥1
and such thatR(2) andR(3) are feasible for the simplified problem with parameters τ (1) and τ (0), respectively.
For, in that case, we have that, assuming without loss of generality that we are solving the minimization
problem,

n∑
i=1

(R
(0)
i )2 ≤

n∑
i=1

(R
(2)
i )2 ≤

n∑
i=1

(R
(1)
i )2 + 4 · ∥τ (0) − τ (1)∥1,

and similarly
n∑

i=1

(R
(1)
i )2 ≤

n∑
i=1

(R
(3)
i )2 ≤

n∑
i=1

(R
(0)
i )2 + 4 · ∥τ (0) − τ (1)∥1.

Therefore, it suffices to construct R(2) and R(3). The construction involves two steps:
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1. Ensure that the sum of the risk vector is correct within each stratum;

2. Ensure that the L1 budget constraint is satisfied.

The L1 distance needed to achieve each of these steps is bounded by ∥τ (0) − τ (1)∥1, and so R(2) and R(3)

will have the required property.
Assume again that we are solving the minimization problem. Consider the j-th unobserved stratum (i.e.,

i ∈ Sj,1) with associated upper and lower thresholds tlwr and tupr and suppose without loss of generality

that τ
(0)
j ≤ τ

(1)
j . Then, to achieve the first step, we simply raise tupr until the sum of the risk vector is τ

(1)
j

or tupr = 1. If tupr = 1, then we raise tlwr until the sum of the risk vector is τ
(1)
j . We note that since our

risk vector has strictly increased, the L1 distance between the original and new risk vectors is exactly the

difference in their sums, i.e., τ
(1)
j − τ

(0)
j . Call the risk vector that results from performing this operation

across all strata R′. Then, it follows that

∥R′ − R̂∥1 ≤ ∥R(0) − R̂∥1 + τ
(1)
j − τ

(0)
j ≤ ϵ+ τ

(1)
j − τ

(0)
j .

To achieve the second step, in strata Sj,a where tupr < 1 and tlwr > 0, we simply raise tupr and lower tlwr

so as to ensure that the sum of the risk vector does not change. Doing so reduces the L1 distance between
the risk vector and R̂, so we do so until the L1 budget constraint is satisfied. In particular, this process can
be carried out until tupr = 1 or tlwr = 0 in every stratum. If the budget constraint is still not satisfied, then
the simplified problem for τ (1) is not feasible, contrary to our assumption that there exists a solution R(1).
Therefore, the process halts, and, moreover, requires moving at most ∥τ (0)− τ (1)∥1 in L1 distance. Call the
resulting risk vector R(2). Then, it follows that∑

i∈Sj,1

R
(2)
i = τ

(1)
j (j = 1, . . . ,m), ∥R(2) − R̂∥1 ≤ ϵ.

The other constraints are satisfied trivially. We can construct R(3) similarly, and the proof is complete for
minimization. For maximization, the argument is exactly similar, except that we increase and decrease Ri0

and Ri1 instead of tlwr and tupr.

We can extend the previous results to bound the error in the calculation of the coefficients themselves.

Lemma B.20. Let V (ϵ) denote the value of

Minimize
R∈Rn

1

n

m∑
j=1

nj ·Var
(
(Ri)i∈Gj

)
s.t. 1

n

∑n
i=1 |Ri − R̂i| ≤ ϵ∑

i∈Sj,1
Ri = ρj , (j = 1, . . . ,m)

Ri ≤ ui, (i = 1, . . . , n)
Ri ≥ ℓi. (i = 1, . . . , n)

. (32)

To run Algorithm 1 with parameter ϵ, let

η = (η1, . . . , ηm)

denote the step size of our grid search in each of the m strata on the τ = (τ1, . . . , τm) scale. Let δ∗ denote
the true optimum of the base problem, and let δ† denote the value of the objective returned by applying
Algorithm 1. Then

|δ∗ − δ†| ≤ 6∥η∥1 + 2mγ

V (ϵ)2
+

2
n1

η1 +
2
nj
ηj

V (ϵ)
+

2∥η∥1
V (ϵ)

.

Proof. The proof is a straightforward exercise in bounding the various terms in Eq. (10) in Lemma B.2. In
particular, by Eq. (10), |δ∗ − δ†| is equivalent to∣∣∣∣ a0 · b0c0 + d0

− a1 · b1
c1 + d1

∣∣∣∣ , (33)
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where

a0 =
1

n

m∑
j=1

σj · τ∗j − (1− σj) · ρj , a1 =
1

n

m∑
j=1

σj · τ †j − (1− σj) · ρj ,

b0 =
τ∗j + ρj

nj
− τ∗1 − ρj

nj
, b1 =

τ †j + ρj

nj
− τ †1 − ρ1

n1
,

c0 =
1

n

n∑
i=1

(R∗
i )

2, c1 =
1

n

n∑
i=1

(R†
i )

2,

d0 =
1

n

m∑
j=1

(
ρj + τ∗j

nj

)2

, d1 =
1

n

m∑
j=1

(
ρj + τ †j

nj

)2

.

Here, R∗
i is the optimal risk vector—which, by Corollary B.4, must correspond to an optimum of the

simplified problem—and R†
i is the risk vector found by Algorithm 1.24 Since the gap between the optimal

and approximate solutions can only increase, we may assume without loss of generality that R† is the
risk vector found by Algorithm 5 or Algorithm 8 at the gridpoint nearest (τ∗1 , . . . , τ

∗
m). Finally, since only

maximizing the objective involves approximation error, we may assume without loss of generality that R†

is the risk vector found by Algorithm 8.
Now, it follows by a straightforward algebraic manipulation that

δ∗ − δ† = a0 · b0 ·
(

1

c0 + d0
− 1

c1 + d1

)
+ a0 · (b0 − b1) ·

1

c1 + d1
+ (a0 − a1) · b1 ·

1

c1 + d1
.

Therefore, we seek bounds A, B, and V such that

|a0|, |a1| ≤ A, |b0|, |b1| ≤ B, |c0 + d0|, |c1 + d1| ≥ V

and ∆a, ∆b, and ∆v such that

|a0 − a1| ≤ ∆a, |b0 − b1| ≤ ∆b,

∣∣∣∣ 1

c0 + d0
− 1

c1 + d1

∣∣∣∣ ≤ ∆v.

Then, it will follow that

|δ∗ − δ†| ≤ AB∆v +
A

V
∆b +

B

V
∆a.

To find A, B, and V , we note that for any possible tj and rj , we have that

m∑
j=1

|σj · tj | ≤ n,

m∑
j=1

|(1− σj) · rj | ≤ n,

whence |ai| ≤ 2 for i = 0, 1. Therefore we can take |A| = 2. In the same way, we have the bound∣∣∣∣τj + ρj
nj

− τ1 − ρj
n1

∣∣∣∣ ≤ 2,

so we take B = 2 as well. Finally, we have that |c0 + d0| ≥ V (ϵ) and |c1 + d1| ≥ V (ϵ) by definition, so we
take V = V (ϵ).

Now, note that

|a0 − a1| =

∣∣∣∣∣∣ 1n
m∑
j=1

σj · (τ∗j − τ †j )

∣∣∣∣∣∣ ≤ 1

n

m∑
j=1

∣∣∣τ∗j − τ †j

∣∣∣ ≤ 1

n

m∑
j=1

njηj = ∥η∥1,

24We note that Algorithms 5 and 8, for clarity, do not actually return the risk vector R itself, but could easily be modified
to do so. This modification is easily carried through to Algorithm 1.
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so we take ∆a = ∥η∥1. Next, since |τ∗j − τ †j | ≤ ηj and similarly for τ∗1 and τ †1 , we have that

|b0 − b1| ≤
1

n

m∑
j=1

∣∣∣∣∣τ∗j − τ †j
nj

∣∣∣∣∣+
∣∣∣∣∣τ∗1 − τ †1

nj

∣∣∣∣∣ ≤ 2η1
n1

+
2ηj
nj

,

so we take ∆b =
2η1

n1
+

2ηj

nj
. Finally, we have that∣∣∣∣ 1

c0 + d0
− 1

c1 + d1

∣∣∣∣ = ∣∣∣∣ c1 − c0 + d1 − d0
(c0 + d0)(c1 + d1)

∣∣∣∣ ≤ |c0 − c1|+ |d0 − d1|
V 2

.

Therefore, it only remains to bound |c0 − c1| and |d0 − d1|. By Lemma B.19, if R† were the true solution
to the simplified problem, then |c0 − c1| would be bounded by 4∥η∥1, since the L1 distance to the nearest
gridpoint is at most ∥η∥1. However, since R† is only an approximate solution, applying Lemma B.18 gives
that |c0 − c1| is bounded by 2mγ + 4∥η∥1. Similarly, using the fact that∣∣∣∣∣τ∗j + ρj

nj
−

τ †j + ρj

nj

∣∣∣∣∣ ≤ ηj ,

we can apply Lemma B.17 to obtain that |d0 − d1| is less than or equal to 2∥η∥1. Combining these bounds
gives that

|δ∗ − δ†| ≤ 6∥η∥1 + 2mγ

V (ϵ)2
+

2
n1

η1 +
2
nj
ηj

V (ϵ)
+

2∥η∥1
V (ϵ)

,

as desired.

Lemma B.20 gives intuition for how to choose the step sizes appropriately so as to minimize the error in
the coefficients for a given amount of computation. In particular, since solving the parameterized problem
requires roughly the same number of steps at each grid point, the computation scales like the number of
gridpoints, i.e., like

1∏m
j=1 ηj

.

The problem of choosing step sizes η so as to maximize accuracy for a given amount of computation is
therefore essentially equivalent to the following optimization problem:

Minimize
η∈Rm

∑
j=1

λjηj

s.t. ηj > 0, (j = 1, . . . ,m)
m∏
j=1

ηj = M.

Applying the first-order necessary KKT conditions yields that

λj = ν
∏
k ̸=j

ηk, i.e., λjηj = νM,

whence we have that

ηj =

m

√
M
∏m

j=1 λj

λj
.

In particular, the step sizes should be chosen so that they are inversely proportional to their weights in the
error bound in Lemma B.20.

Unfortunately, these weights vary with ϵ. For large ϵ, when V (ϵ) is close to zero, the weights are dominated
by the first term, which is optimized when η1 = · · · = ηm. For small ϵ, when V (ϵ) is large, the weights are
mixture of (somewhat larger) terms that would be optimized by η1 = · · · = ηm and (somewhat smaller)
terms that would be optimized by η1

n1
= · · · = ηm

nm
.
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Thus, one reasonable heuristic that is likely to perform well across a range of ϵ is to choose ηj to be equal
to some fixed η for all j. We use this heuristic in our experiments and software implementation.

Alternatively, to simplify the error bounds and eliminate the dependence on the data through the nj , one
could choose ηj to be proportional to nj for all j. Making this choice gives the error bounds in Theorem 4.2,
while the runtime bounds are given by Lemmata B.8 and B.16.

Lastly, since it is a convex problem, it is generally practical to compute V (ϵ). However, to obtain a bound
on the error entirely in terms of the input parameters, we can use the following lemma.

Lemma B.21. Let V (ϵ) be defined as in Lemma B.20. Then

V (ϵ) ≥

 1

n

m∑
j=1

Var
(
(R̂i)i∈Sj,1

)− 4ϵ. (34)

Proof. Let R∗ be the solution to the optimization problem defining V (ϵ). Then, we note that ∥R∗−R̂∥1 ≤ ϵ,
and, moreover, that

V (ϵ)− 1

n

m∑
j=1

Var
(
(R̂i)i∈Sj,1

)
=

1

n

( n∑
i=1

(R∗
i )

2 − R̂2
i

)
+

 m∑
j=1

[∑
i∈Gj

R∗
i

nj

]2
−

[∑
i∈Gj

R̂i

nj

]2 .

Applying Lemma B.17 to the first term yields a bound of 2ϵ. For the second term, we note that

m∑
j=1

∣∣∣∣∣
∑

i∈Gj
R∗

i

nj
−
∑

i∈Gj
R̂i

nj

∣∣∣∣∣ ≤
n∑

i=1

|R∗
i − R̂i| ≤ ϵ,

and so we can apply Lemma B.17 to obtain a bound of 2ϵ on the second term as well. Combining these
bounds gives the desired result.
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Algorithm 2 Piecewise quadratic function evaluation

Input: The collections ∆ and K, as well as the L1 “budget” ϵ.
Output: The value of Σ(∆∗), where ϵ(∆∗) = ϵ.

1: Set N ← length(δ)
2: Initialize i← 1 {Pointer to current position in δ}
3: Initialize ε← 0 {Budget used so far}
4: Initialize t← 0 {Gap between current and next value of ∆}
5: Initialize Σ← 0 {Change in sum of squares}
6: while ε+Ki(∆i+1 −∆i) < ϵ and i < N do
7: Set ε← ε+Ki(∆i+1 −∆i)
8: Set Σ← Σ−Ki ·∆i · (∆i+1 −∆i) +

K
2 · (∆i+1 −∆i)

2

9: Set i← i+ 1
10: end while
11: if Ki = 0 then
12: return Σ {Ki = 0 if and only if the budget was exactly exhausted on the last iteration of the loop}
13: else if i = N then
14: return Σ {i = N if and only if we have made it to the end of δ, i.e., to δ = 0}
15: else
16: Set t← (ϵ− ε)/Ki

17: Set
18: Set Σ← Σ−Ki ·∆i · t+ K

2 · t
2

19: return Σ
20: end if
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Algorithm 3 Minimization algorithm (sum adjustment)

Input: The bounds ℓ and u, the estimates R̂, and the sum µ.
Output: A risk vector R of the form in Lemma B.6 minimizing ∥R− R̂∥1 and satisfying

∑n
i=1 Ri = µ,

along with the ending klwr, kupr, ilwr, iupr, tupr, and tlwr.

1: Set pts to be the concatenation of ℓ, R̂, and u in ascending order {Points at which rates can change}
2: Set R← R̂ {Risk vector}
3: Set n← length(pts)
4: Set ilwr = 1, iupr = n {Indices of next values at which rates might change}
5: Set tlwr ← pts[ilwr], tupr ← pts[iupr] {Thresholds}
6: Set klwr ← 0, kupr ← 0 {Number of active indices}
7: D ← µ−

∑n
i=1 Ri {Difference between required sum and actual sum}

8: if D > 0 then
9: tnxt ← pts[ilwr + 1]

10: d← 0 {Change in sum from moving from tlwr to tnxt}
11: while D > d and ilwr < n do
12: D ← D − d
13: ilwr ← ilwr + 1
14: tlwr ← tnxt

15: tnxt ← pts[ilwr + 1]

16: if tnxt corresponds to an element of R̂ then
17: klwr ← klwr + 1
18: else if tnxt corresponds to an element of u then
19: klwr ← klwr − 1
20: end if
21: d← klwr(tnxt − tlwr)
22: end while
23: if ilwr < n then
24: tlwr ← tlwr + D

klwr

25: end if
26: else if D < 0 then
27: {Similar steps to the D > 0 case but adapted for the upper threshold}
28: end if
29:

30: return R, klwr, kupr, ilwr, iupr, tupr, and tlwr
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Algorithm 4 Minimization algorithm (single stratum)

Input: The bounds ℓ and u, the estimates R̂, and the sum µ.
Output: The collections ∆ and K.

1: Initialize pts, R, tlwr, tupr, klwr, kupr, ilwr, and iupr as in Algorithm 3
2: Set n← length(pts)
3: Set ε← 0 {Amount of budget expended so far}
4: Set ∆← tupr − tlwr {Gap between thresholds}
5: Using Algorithm 3, update R, klwr, kupr, ilwr, iupr, tupr, and tlwr {Ensure that sum is correct}
6: Set ϵ← ϵ− ∥R− R̂∥1, returning that the problem is infeasible if the result is negative
7: if n = 1 then
8: return ∆ = (∆0) and K = 0
9: end if

10: Dlwr ← klwr(pts[ilwr + 1]− tlwr) {Cost of moving from lower threshold to next change point}
11: Dupr ← kupr(tupr − pts[iupr − 1]) {Cost of moving from upper threshold and next change point}
12: D ← min(Dlwr, Dupr) {Smaller of the costs}
13: K ← 0
14: while iupr − ilwr > 1 do
15: Append ∆ to ∆ and K to K
16: if Dlwr = D then
17: ilwr ← ilwr + 1 {Increment lower active index}
18: tlwr ← dps[ilwr] {Update the lower threshold}
19: if tlwr came from R̂ then
20: klwr ← klwr + 1 {Increment klwr if an index is activated}
21: else if tlwr came from u then
22: klwr ← klwr − 1 {Decrement klwr if an index is deactivated}
23: end if
24: Dupr ← Dupr −Dlwr {Calculate new upper active gap}
25: tupr ← tupr − Dlwr

kupr {Calculate new upper threshold}
26: Dlwr ← klwr(dps[ilwr + 1]− tlwr) {Calculate new lower active gap}
27: else
28: {Similar steps as in previous branch, adapted to the upper threshold}
29: end if
30: D ← min(Dlwr, Dupr)
31: ∆← tupr − tlwr

32: K ← klwr·kupr

klwr+kupr

33: end while
34: Append 0 to ∆ and K
35: return ∆,K
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Algorithm 5 Minimization algorithm (combining strata)

Input: The collections ∆(0), K(0), ∆(1), and K(1). Output: A pair (∆(2),K(2)) representing the sum of
functions ϵ(0)(∆) + ϵ(1)(∆) and Σ(0)(∆) + Σ(1)(∆).

1: Initialize i0 ← 0, i1 ← 1 {Pointers to smallest indices not yet combined}
2: Initialize K0 ← 0, K1 ← 0, ∆0 ← 1, ∆1 ← 1 {Current values of the parameters}
3: while i0 ≤ length(∆0) and i1 ≤ length(∆1) do

4: if ∆
(0)
i0

> ∆
(1)
i1

then

5: Set i0 ← i0 + 1, K0 ← K
(0)
i0

, and ∆0 ← ∆
(0)
i0

6: Append ∆0 to ∆(2) and K0 +K1 to K(2)

7: else
8: Set i1 ← i1 + 1, K1 ← K

(1)
i1

, and ∆1 ← ∆
(1)
i1

9: Append ∆1 to ∆(2) and K0 +K1 to K(2)

10: end if
11: end while
12: return ∆(2) and K(2)

Algorithm 6 Maximization algorithm (sum adjustment)

Input: The bounds ℓ and u, the estimates R̂, and the sum µ.
Output: A risk vector R of the form in Lemma B.11 minimizing ∥R− R̂∥1 and satisfying

∑n
i=1 Ri = µ,

along with ilwr, iupr.

1: Set R← R̂ {Risk vector}
2: Set n← length(R)
3: Set ilwr = 1, iupr = n {Pivots}
4: D ← µ−

∑n
i=1 Ri {Difference between required sum and actual sum}

5: if D > 0 then
6: d← uiupr −Riupr

7: while D > d and iupr > 0 do
8: Riupr ← ui

9: D ← D − d
10: iupr ← iupr − 1
11: d← uiupr −Riupr

12: end while
13: Riupr ← Riupr +D
14: else if D < 0 then
15: {Similar steps to the D > 0 case but adapted for the lower pivot}
16: end if
17:

18: return R, ilwr, and iupr.
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Algorithm 7 Maximization algorithm (single stratum)

Input: The bounds ℓ and u, the estimates R̂, the sum µ, and the step size γ.
Output: The collection Σ.

1: Initialize R, ilwr, and iupr as in Algorithm 6
2: Set n← length(R)
3: Set ε← 0 {Amount of budget expended so far}
4: Using Algorithm 6, update R, ilwr, and iupr, tupr {Ensure that sum is correct}
5: Set ε← ∥R− R̂∥1 and ϵ← ϵ− ε, returning that the problem is infeasible if ε > ϵ
6: while ε ≥ γ do
7: Append ∞ to Σ {Sentinel value to indicate infeasibility}
8: ε← ε− γ
9: end while

10: ∆lwr ← Rilwr − ℓilwr

11: ∆upr ← uiupr −Riupr

12: ∆← min(∆lwr,∆upr)
13: Σ←

∑n
i=1 R

2
i {Sum of squares}

14: while iupr < ilwr do
15: if ∆ ≥ γ − ε then
16: Σ← Σ+ 2γ · (γ + [Riupr −Rilwr ]) {If next step would exceed step size, record change}
17: Append Σ to Σ
18: Rilwr ← Rilwr + γ, Riupr ← Riupr + γ {Update risk vector at pivots}
19: ∆← ∆− γ, ∆min ← ∆min − γ, ∆max ← ∆max − γ {Update gaps}
20: ε← 0 {Only adjust step size on first iteration}
21: else
22: if ∆lwr = ∆ then
23: Σ← Σ+ 2∆ · (∆ + [Riupr −Rilwr

])
24: Rilwr ← ℓilwr , Riupr ← Riupr +∆
25: ilwr ← ilwr + 1 {Increment lower active index}
26: else
27: {Similar steps as in previous branch, adapted to the upper pivot}
28: end if
29: end if
30: end while
31: Append Σ to Σ until it has the appropriate length
32: return Σ

Algorithm 8 Maximization algorithm (combining strata)

Input: The collections Σ(0) and Σ(1). Output: A collection Σ(2) representing the (approximate)
maximum objective across both collections.

1: Initialize i0 ← 0, i1 ← 1 {Pointers to indices currently being combined}
2: Initialize M ← −∞ {Current maximum}
3: for i = 0, . . . , ϵ/γ do
4: i0 ← 0, i1 ← i
5: while i0 < i do
6: M ← Σ

(0)
i0

+Σ
(1)
i1

{Find the maximum across gridpoints whose total budget is iγ}
7: i0 ← i0 + 1, i1 ← i1 − 1
8: end while
9: Append M to Σ(2)

10: M ← −∞
11: end for
12: return Σ(2)
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C Estimation of the Non-Parametric Estimand by Linear Regres-
sion

To assess the quality of risk-adjusted regression as an estimator of the non-parametric estimand in (4), we
construct synthetic datasets based on the NYPD data. On this synthetic dataset, we compare the true value
of the risk adjusted disparities—as defined in (4)—to estimates from a risk-adjusted regression.

To construct the synthetic datasets, we first use the real NYPD data to estimate the probability of frisk,
Pr(A = 1 | X̃), conditional on the same observed pre-frisk covariates X̃ used to estimate risk in the main
analysis, excluding race, suspected crime, and precinct.25 We similarly estimate the probability a weapon is
recovered on a frisked individual, Pr(W = 1 | X̃, A = 1), again conditional on the same pre-frisk covariates.
In both cases, we use logistic regression to estimate the probabilities. The frisk model is trained on all data
from 2008 and 2009, and the weapon-recovery model is trained on the subset of stops of the same in which
an individual was frisked.

With the resulting covariate estimates β̂weapon and β̂frisk, for the k-th iteration of the m = 100 simulation
instances, we generate a population of n = 1,000,000 observations as follows:

1. Sample noise terms ϵweapon ∼ N (0, 1
50 · I) and ϵfrisk ∼ N (0, 1

50 · I), resulting in new weapon possession

and frisk model coefficients βk,weapon = β̂weapon + ϵweapon and βk,frisk = β̂frisk + ϵfrisk.

2. Sample, with replacement, n covariate vector and race pairs (X̃i, Ci)i=1,...,n from the original NYPD
dataset covering the years 2010 and 2011.

3. For all i = 1, . . . , n:

(a) Define the probability the i-th individual is frisked: pi = logit−1(β⊤
k,friskX̃i). Then sample Ai ∼

Bernoulli(pi).

(b) Define the probability the i-th individual has a weapon: Ri = logit−1(β⊤
k,weaponX̃i). Then, sample

Wi ∼ Bernoulli(Ri).

The above procedure produces a set of tuples, Ωj = {(X̃i, Ci, Ai, Ri,Wi)}i=1,...,n, each of which is a syn-
thetic population. On this population, we compute the ground-truth risk-adjusted disparities via Eq. (4).26

These disparities are typically non-zero; note, though, that there is no disparate treatment in this example
since, by construction, the probability pi of frisking an individual does not explicitly depend on race. The
disparate impact we measure in this scenario thus arises from decisions that are simply not appropriately
tailored to risk, as in Griggs.

We next evaluate the ability of our own risk-adjusted regression to recover the ground-truth disparate
impact. To do so, we first divide Ωj into two random sets of equal size, Ωj

1 and Ωj
2. On Ωj

1, we use logistic
regression to estimate the probability that frisked individuals are found to have a weapon,27 based on the
pre-frisk covariates X̃. This model is trained on the subset of stops in Ωj

1 in which a frisk was carried out. We

then use this fitted model to predict ex ante risk R̂i for every stop in Ωj
2. Lastly, we fit a linear risk-adjusted

regression on Ωj
2 to estimate the Black-white and Hispanic-white disparities.

We note that to simulate real-world settings, we have ensured that, by construction, the linear probability
model used to estimate disparities is misspecified. Nevertheless, it is a reasonably robust estimator of the
true disparity, as can be seen in Figure 10. For both Black and Hispanic pedestrians in the synthetic data,
our risk-adjusted estimates of disparate impact are very close to the ground-truth estimands, with model
misspecification leading to slight overestimates in some instances, and slight underestimates in others.

25We exclude race to demonstrate that disparate impact can occur in the absence of disparate treatment. We exclude
suspected crime and precinct because the large number of strata for these covariates leads to sampling difficulties.

26The definition in Eq. (4) involves conditioning on risk, which is continuous. This is problematic on a finite population, as
there may be only one individual with any given risk. Binning risks avoids this issue, and, in this case, we get nearly identical
values for any appropriately small bin size.

27To avoid risk estimates not being well defined when certain feature levels appear in Ωj
2 but not Ωj

2, the models are fit using

penalized maximum likelihood with the glmnet package and an elastic net penalty of α = 1
10

.
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Figure 10: Estimates of disparate impact using risk-adjusted regressions on m = 100 synthetic datasets, each
consisting of n = 1,000,000 simulated stops. Despite model misspecification, the risk-adjusted regressions
coefficient is a reasonably robust estimator of the true disparity.
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Figure 11: Estimates of disparate impact across precincts stratified by racial composition of stops, with the
black bands showing the range of possible estimates if the odds ratio of estimated risk and true risk differ by
at most ϵ = 0.7 p.p.

D Accounting for factors beyond risk

Our analysis in the main text implicitly assumed that risk of weapon possession is the only legitimate
consideration for carrying out a frisk—an assumption motivated by the fact that a frisk is legally allowed
only to ensure officer safety. Officers, however are not required to frisk every individual who they are legally
allowed to frisk (i.e., the law only sets a lower bar), leaving open the possibility that risk is not the only
factor officers consider when making frisk decisions.28 For example, in theory, resource-constrained officers
might choose to frisk only the riskiest individuals they stop, effectively setting the bar to frisk individuals
higher than the law demands. If resources differ across neighborhoods, which in turn correlate with racial
composition, then the risk-adjusted disparities we see may accordingly have a policy-relevant justification.

In Figure 11, we aim to account for this possibility by repeating our analysis on three subsets of stops
stratified by geography. Specifically, we split the 76 police precincts in our data into three bins based
on the racial composition of stopped individuals. Across strata, we find qualitatively similar estimates of
disparate impact, corroborating our main results. These within-strata estimates are also reasonably robust
to mismeasurement of risk, as indicated by the black bands, although less so than our main result—a 0.7 p.p.
average absolute difference in risk would potentially be sufficient to change the sign of the disparity in the
most non-white neighborhoods, or to mask a disparity roughly ten times larger than our estimate.

That factors beyond risk may justifiably inform frisk decisions can be viewed as a form of omitted-
variable bias, but one distinct in kind from that typically considered in studies of discrimination. Our
disparate impact analysis is predicated on the understanding that risk, appropriately defined and estimated,
captures nearly all policy-relevant considerations. Although it can be important in practice to accommodate
exceptions when there is a clearly articulated rationale—as we have done above—care must be taken not to
blindly adjust for every available factor, lest one re-introduce included-variable bias.

28In Floyd, the court found that officers at times frisked individuals even in the absence of safety concerns, in violation of the
Fourth Amendment of the U.S. Constitution (Goel et al., 2016b).
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E Additional figures
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Figure 12: Distributions of the estimated ex ante risk of probability of carrying a weapon for stopped pedes-
trians, on a log scale. The vertical lines indicate each group’s average risk (i.e., the estimated rate at which
stopped members of the group carry weapons): 2.7% for white pedestrians, 1.5% for Black pedestrians, and
1.7% for Hispanic pedestrians.
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Figure 13: Distributions of the estimated ex ante risk of probability of carrying a weapon for stopped pedes-
trians, on a log scale among frisked individuals, faceted by whether or not a weapon was found.
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Figure 14: Comparison of model-predicted versus empirical weapon recovery rate (“hit rate”). Figure 14a
shows that the model-predicted hit rates are close to their empirical counterparts, conditional on values of
age, race, and gender. In Figure 14b, stops are binned by precinct and stop location. Points are plotted for
each bin with more than 100 stops, sized by the number of stops, with colors representing the stop location
type: transit, housing, or other. The plotted points are near the diagonal, suggesting that the outcome model
is well-calibrated and predicts well over the full range of hit rates and frisk rates, respectively. The model
itself achieves an AUC of 81% on the second half of the data.
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Figure 15: Frisk rates vs. risk (where risk has been estimated without race as a covariate), as estimated via
logistic regression curves fit separately for each race group. Across risk levels, stopped Black and Hispanic
pedestrians are frisked substantially more frequently than comparably risk white individuals, indicative of
disparate impact.
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Figure 16: Racial gaps in frisk rates adjusting for different sets of covariates, where the y-axis shows the
percentage point difference relative to stopped white individuals. The left panel shows the raw disparities in
frisk rates. As a measure of discrimination, raw disparities suffer from omitted-variable bias: there may, in
theory, be legitimate reasons why Black and Hispanic pedestrians are more likely to be frisked. The middle
panel shows the estimated race effects in a kitchen-sink regression, adjusting for all pre-frisk covariates.
These estimates suffer from included-variable bias because they adjust for features that are correlated with
race but unrelated to risk. The right panel shows the results of our risk-adjusted regression—where risk has
been estimated without race as a covariate—adjusting exclusively for estimated risk of weapon possession. In
all cases, estimated standard errors are less than 0.2 percentage points, and so are not visible in the plot.
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Figure 17: Sensitivity of the risk-adjusted disparities in frisk decisions to mismeasurement of risk, where risk
has been estimated without race as a covariate. The blue bands bound our estimates of disparate impact as
a function of the average absolute difference between the true and estimated risks ϵ, relative to the base rate
(1.7%). The dotted line at 44% (ϵ = 0.7 p.p.) corresponds to a simulated situation with severe confounding.
The grey bands represent 95% percentile bootstrapped confidence intervals (N = 1000; Zhao et al., 2019).
The step size for the grid search over group-level total risks was 0.05 p.p. for all groups, and γ = 0.01 p.p.
was the approximation parameter for the maximization routine.
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Figure 18: Estimates of disparate impact across precincts stratified by racial composition of stops, with the
black bands showing the range of possible estimates if the odds ratio of estimated risk and true risk differ by
at most ϵ = 0.7 p.p. Here, risk is estimated without race as a covariate.
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Figure 19: Distributions of the estimated ex ante risk of carrying a weapon for stopped pedestrians, on a log
scale and estimated without race as a covariate. The vertical lines indicate each group’s average risk (i.e., the
estimated rate at which stopped members of the group carry weapons): 2.7% for white pedestrians, 1.5% for
Black pedestrians, and 1.7% for Hispanic pedestrians.
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Figure 20: Distributions of the estimated ex ante risk of probability of carrying a weapon—estimated without
race as a covariate—for stopped pedestrians, on a log scale among frisked individuals, faceted by whether or
not a weapon was found.
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Figure 21: Comparison of model-predicted versus empirical weapon recovery rate (“hit rate”), where the risk
model does not include race as a covariate. Figure 21a shows that the model-predicted hit rates are close to
their empirical counterparts, conditional on values of age, race, and gender. In Figure 21b, stops are binned
by precinct and stop location. Points are plotted for each bin with more than 100 stops, sized by the number
of stops, with colors representing the stop location type: transit, housing, or other. The plotted points are
near the diagonal, suggesting that the outcome model is well-calibrated and predicts well over the full range
of hit rates and frisk rates, respectively. The model itself achieves an AUC of 81% on the second half of the
data.
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